Leveraging Multiple GPUs and CPUs for Graphlet Counting in Large Networks

Ryan A. Rossi

Member of Research Staff
Palo Alto Research Center (PARC)

Joint work with:

Rong Zhou PARC

Graphs – rich and powerful data representation

Gene Regulatory Network [Decourty 2008]

Small induced subgraphs

1
0.83
0.67
0.5
0.33
0.17
0

Small induced subgraphs

1
0.83
0.67
0.5
0.33
0.17
0

Connected	H_1	H_3 H_4	H_7 H_8 H_9 H_{10} H_{11} H_{12}
Disconnected	0	o—o o o	
	О Н ₂	Ο Ο H ₅ H ₆	H_{13} H_{14} H_{15} H_{16} H_{17}

 H_2

Small induced subgraphs

 H_5

k-graphlets = family of graphlets of size k

 H_{14}

 H_{15}

 H_{16}

 H_{13}

 H_6

Network Motifs: Simple Building Blocks of Complex Networks [Milo et. al – Science 2002]

The Structure and Function of Complex Networks [Newman – Siam Review 2003]

Small induced subgraphs

1
0.83
0.67
0.5
0.33
0.17
0

k-graphlets = family of graphlets of size k
motifs = frequently occurring subgraphs

Network Motifs: Simple Building Blocks of Complex Networks [Milo et. al – Science 2002]

The Structure and Function of Complex Networks [Newman – Siam Review 2003]

Small induced subgraphs

1
0.83
0.67
0.5
0.33
0.17
0

k-graphlets = family of graphlets of size k
motifs = frequently occurring subgraphs

Applied to food web, genetic, neural, web, and other networks Found distinct graphlets in each case

Network Motifs: Simple Building Blocks of Complex Networks [Milo et. al – Science 2002]

The Structure and Function of Complex Networks [Newman – Siam Review 2003]

Applications of Graphlets

Dragonly Buzzard Fox
Frog Snake
Ladybird Mouse
Grasshopper Plantain

- Biological Networks
 - network alignment, protein function prediction

[Pržulj 2007][Milenković-Pržulj 2008] [Hulovatyy-Solava-Milenković 2014] [Shervashidze et al. 2009][Vishwanathan et al. 2010]

- Social Networks
 - Triad analysis, role discovery, community detection

[Granovetter 1983][Holland-Leinhardt 1976][Rossi-Ahmed 2015] [Ahmed et al. 2015][Xie-Kelley-Szymanski 2013]

- Internet AS [Feldman et al. 2008]
- Spam Detection

[Becchetti et al. 2008][Ahmed et al. 2016]

Useful for various machine learning tasks

e.g., Anomaly detection, Role Discovery, Relational Learning, Clustering etc.

Useful for a variety of ML tasks

- Graph-based anomaly detection
 - Unusual/malicious behavior detection
 - Emerging event and threat identification, ...
- · Graph-based semi-supervised learning, classification, ...
- Link prediction and relationship strength estimation
- Graph similarity queries
 - Find similar nodes, edges, or graphs
- Subgraph detection and matching

Applications:

Higher-order network analysis and modeling

Higher-order network structures

- Visualization "spotting anomalies" [Ahmed et al. ICDM 2014]
- Finding large cliques, stars, and other larger network structures [Ahmed et al. KAIS 2015]
- Spectral clustering [Jure et al. Science 2016]
- Role discovery [Ahmed et al. 2016]

• • •

How CPU/GPUs compare

CPU	GPU
Large memory	Memory is very limited
Few fast/powerful processing units	Thousands of smaller processing units
Handles unbalanced jobs better	Performs best with "balanced" workloads
Optimized for general computations	Optimized for simple repetitive calculations at a very fast rate.

How CPU/GPUs compare

Problem: global graphlet counting (macro-level)

INPUT: a *large* graph G=(V,E), set of graphlets \mathcal{H} **PROBLEM:** Find the number of embeddings (appearances) of each graphlet $H_k \in \mathcal{H}$ in G

Problem: global graphlet counting

(macro-level)

INPUT: a *large* graph G=(V,E), set of graphlets \mathcal{H} **PROBLEM:** Find the number of embeddings (appearances) of each graphlet $H_k \in \mathcal{H}$ in G

Given an input graph G

- How many triangles in G?
- How many cliques of size 4-nodes in G?
- How many cycles of size 4-nodes in G?

Problem: global graphlet counting

(macro-level)

INPUT: a large graph G=(V,E), set of graphlets \mathcal{H}

PROBLEM: Find the number of embeddings (appearances) of each graphlet $H_k \in \mathcal{H}$ in **G**

Given an input graph G

- How many triangles in G?
- How many cliques of size 4-nodes in G?
- How many cycles of size 4-nodes in G?

- → Many applications require counting all k-vertex graphlets
- → Recent research work
 - Exact/approximation of global counts [Rahman et al. TKDE14] [Jha et al. WWW15]
 - Scalable for massive graphs (billions of nodes/edges)] [Ahmed et al. ICDM15, KAIS16]

Problem: local graphlet counting

(micro-level)

INPUT: a *large* graph G=(V,E), set of graphlets \mathcal{H}

PROBLEM: Find the number of occurrences that edge i is contained within H_k , for all $k=1,...,|\mathcal{H}|$

Current work

Sequential

- Enumerate all possible graphlets
 - Exhaustive enumeration is too expensive

 $\mathcal{O}(|V|^k)$

- Count graphlets for each node
 - Expensive for large k

$$\mathcal{O}(|V|.\Delta^{k-1})$$
 [Shervashidze et al. – AISTAT 2009] [Hočevar et al. – Bioinfo. 13]

 \rightarrow **Not practical** – scales only for graphs with few hundred/thousand nodes/edges

Current work

Sequential

- Enumerate all possible graphlets
 - Exhaustive enumeration is too expensive

 $\mathcal{O}(|V|^k)$

- Count graphlets for each node
 - Expensive for large k

$$\mathcal{O}(|V|.\Delta^{k-1})$$
 [Shervashidze et al. – AISTAT 2009] [Hočevar et al. – Bioinfo. 13]

→ **Not practical** – scales only for graphs with few hundred/thousand nodes/edges

Parallel

- Edge-centric graphlet counting (PGD) [Ahmed et al. ICDM 14, KAIS 15]
 - Multi-core CPUs, large graphs

Current work

Sequential

- Enumerate all possible graphlets
 - Exhaustive enumeration is too expensive

 $\mathcal{O}(|V|^k)$

- Count graphlets for each node
 - Expensive for large k

 $\mathcal{O}(|V|.\Delta^{k-1})$ [Shervashidze et al. – AISTAT 2009] [Hočevar et al. – Bioinfo. 13]

→ **Not practical** – scales only for graphs with few hundred/thousand nodes/edges

Parallel

- Edge-centric graphlet counting (PGD) [Ahmed et al. ICDM 14, KAIS 15]
 - Multi-core CPUs, large graphs
- Node-centric graphlet counting,
 - Single GPU, Handles only tiny graphs (ORCA-GPU) [Milinković et al.]

Our approach

Hybrid parallel graphlet counting framework that leverages all available CPUs and GPUs

Our approach

Hybrid parallel graphlet counting framework that leverages all available CPUs & GPUs

Other key advantages:

- Edge-centric parallelization
 - Improved load balancing & lock-free
- Global and local graphlet counts
- Connected and disconnected graphlets
- Fine-grained parallelization
- Space-efficient

$$T = \{\underbrace{w_1, \cdots, w_i}_{T_{1:i}}, \underbrace{w_{i+1}, \cdots, w_t}_{T_{i+1:t}}\}$$

Overview of our approach

Overview

T = nodes completing a triangle with edge (v, u)

Our Approach –

(Edge-centric, parallel, space-efficient)

Our Approach –

(Edge-centric, parallel, space-efficient)

Our Approach –

(Edge-centric, parallel, space-efficient)

Step 1

Searching Edge Neighborhoods

For each edge Find the triangles

Step 2

Count a few k-graphlets

For each edge, count only:

k-cliques

k-cycles

tailed-triangles

Step 3

Count all other graphlets

For each edge, use

combinatorial relationships

to derive counts of other graphlets

in constant time o(1)

Our Approach – (Edge-centric, parallel, space-efficient)

Step 1

Searching Edge Neighborhoods

For each edge Find the triangles

Step 2

Count a few k-graphlets

For each edge, count only:

k-cliques

k-cycles

tailed-triangles

Step 3

Count all other graphlets

For each edge, use

combinatorial relationships

to derive counts of other graphlets in constant time o(1)

Step 4

Merge all counts

Neighborhood runtimes are **power-lawed**

Neighborhood runtimes are **power-lawed**

Most edge neighborhoods are fast with runtimes that are approximately equal.

HOWEVER, a handful of neighborhoods are hard and take significantly longer.

Neighborhood runtimes are **power-lawed**

Most edge neighborhoods are fast with runtimes that are approximately equal.

HOWEVER, a handful of neighborhoods are hard and take significantly longer.

Neighborhood runtimes are **power-lawed**

QUESTION:

What is the "best" way to partition neighborhoods among CPUs and GPUs?

• "hardness" proxy → edge deg., vol., ...

Most edge neighborhoods are fast with runtimes that are approximately equal.

Edges

 $\times 10^{4}$

Our approach

• Order edges by "hardness" and partition into 3 sets:

Our approach

Order edges by "hardness" and partition into 3 sets:

- Compute induced subgraphs centered at each edge
 - CPU Workers: use hash table for o(1) lookups, O(N)
 - GPU Workers: use binary search for o(log d) lookups
- When finished, dequeue next b edges:
 - CPU: get b edges from FRONT of Π_{unproc}
 - GPU: get b edges from BACK of Π_{unproc}

Preprocessing steps

Three simple and efficient preprocessing steps:

1) Sort vertices from smallest to largest **degree** $f(\cdot)$ and **relabel** them s.t. $f(v_1) \le \cdots \le f(v_N)$

Preprocessing steps

Three simple and efficient preprocessing steps:

- 1) Sort vertices from smallest to largest **degree** $f(\cdot)$ and **relabel** them s.t. $f(v_1) \le \cdots \le f(v_N)$
- 2) For each $\Gamma(v_i)$, $\forall i = 1, ..., N$, order the set of neighbors $\Gamma(v_i) = \{..., w_j, ..., w_k, ...\}$ from smallest to largest **deg.**

Preprocessing steps

Three simple and efficient preprocessing steps:

- 1) Sort vertices from smallest to largest **degree** $f(\cdot)$ and **relabel** them s.t. $f(v_1) \le \cdots \le f(v_N)$
- 2) For each $\Gamma(v_i)$, $\forall i = 1, ..., N$, order the set of neighbors $\Gamma(v_i) = \{..., w_j, ..., w_k, ...\}$ from smallest to largest **deg.**
- 3) Given edge $(v, u) \in E$, ensure that $f(v) \ge f(u)$ – hence, v is always the vertex with largest degree, $d_v \ge d_u$

Preprocessing steps

Three simple and efficient preprocessing steps:

- 1) Sort vertices from smallest to largest **degree** $f(\cdot)$ and **relabel** them s.t. $f(v_1) \le \cdots \le f(v_N)$
- 2) For each $\Gamma(v_i)$, $\forall i = 1, ..., N$, order the set of neighbors $\Gamma(v_i) = \{..., w_j, ..., w_k, ...\}$ from smallest to largest **deg.**
- 3) Given edge $(v, u) \in E$, ensure that $f(v) \ge f(u)$ – hence, v is always the vertex with largest degree, $d_v \ge d_u$
- All of these steps are not required, but significantly improve
- Each step is extremely fast and lends itself to easy parallelization

Fine Granularity & Work Stealing

For a single edge $(v, u) \in E$,

- I. Compute the sets \mathbf{T} and $\mathbf{S_u}$
- II. Find the total 4-cliques using T
- III. Find the total 4-cycles using S_u

NOTE: (II) and (III) are independent → parallelize

$$T = \{\underbrace{w_1, \cdots, w_i}_{T_{1:i}}, \underbrace{w_{i+1}, \cdots, w_t}_{T_{i+1:t}}\}$$

Unrestricted counts

$$|S_u| = d_u - |T_e| - 1$$

 $|S_v| = d_v - |T_e| - 1$

3-graphlets

$$C_{3} = \sum_{e_{k}=(v,u)\in E} \mathbf{X}_{k,3} = \sum_{e_{k}=(v,u)\in E} |T|$$

$$C_{4} = \sum_{e_{k}=(v,u)\in E} |S_{v}| + |S_{u}|$$

$$C_5 = \sum_{e_k = (v,u) \in E} N - (|S_v| + |S_u| + |T|) - 2$$

$$C_{7} = \sum_{e_{k} = (v,u) \in E} \mathbf{X}_{k,7}$$

$$C_{13} = \sum_{e_{k} = (v,u) \in E} |T| \cdot D_{e}$$

$$C_{8} = \sum_{e_{k} = (v,u) \in E} (\frac{T}{2})$$

$$C_{14} = \sum_{e_{k} = (v,u) \in E} M - d_{v} - d_{u} + 1$$

$$C_{9} = \sum_{e_{k} = (v,u) \in E} |T| \cdot |S_{v}| \cdot |S_{u}|$$

$$C_{15} = \sum_{e_{k} = (v,u) \in E} (|S_{v}| + |S_{u}|) \cdot D_{e}$$

$$C_{10} = \sum_{e_{k} = (v,u) \in E} \mathbf{X}_{k,10}$$

$$C_{11} = \sum_{e_{k} = (v,u) \in E} (\frac{|S_{v}|}{2}) + (\frac{|S_{u}|}{2})$$

$$C_{12} = \sum_{e_{k} = (v,u) \in E} |S_{v}| \cdot |S_{u}|$$

$$D_{e} = N - (|S_{v}| + |S_{u}| + |T|) - 2$$

$$C_{12} = \sum_{e_{k} = (v,u) \in E} |S_{v}| \cdot |S_{u}|$$

$$C_{13} = \sum_{e_{k} = (v,u) \in E} |T| \cdot D_{e}$$

$$C_{14} = \sum_{e_{k} = (v,u) \in E} (|S_{v}| + |S_{u}|) \cdot D_{e}$$

$$C_{15} = \sum_{e_{k} = (v,u) \in E} (|S_{v}| + |S_{u}| + |T|) - 2$$

$$C_{16} = \sum_{e_{k} = (v,u) \in E} (|S_{v}| + |S_{u}| + |T|) - 2$$

$$C_{17} = \sum_{e_{k} = (v,u) \in E} |S_{v}| \cdot |S_{u}|$$

$$C_{18} = \sum_{e_{k} = (v,u) \in E} |S_{v}| \cdot |S_{u}|$$

$$C_{19} = \sum_{e_{k} = (v,u) \in E} |S_{v}| \cdot |S_{u}|$$

$$C_{10} = \sum_{e_{k} = (v,u) \in E} |S_{v}| \cdot |S_{u}|$$

$$C_{10} = \sum_{e_{k} = (v,u) \in E} |S_{v}| \cdot |S_{u}|$$

$$C_{10} = \sum_{e_{k} = (v,u) \in E} |S_{v}| \cdot |S_{u}|$$

$$C_{10} = \sum_{e_{k} = (v,u) \in E} |S_{v}| \cdot |S_{u}|$$

$$C_{10} = \sum_{e_{k} = (v,u) \in E} |S_{v}| \cdot |S_{u}|$$

$$C_{10} = \sum_{e_{k} = (v,u) \in E} |S_{v}| \cdot |S_{u}|$$

$$C_{10} = \sum_{e_{k} = (v,u) \in E} |S_{v}| \cdot |S_{u}|$$

$$C_{10} = \sum_{e_{k} = (v,u) \in E} |S_{v}| \cdot |S_{u}|$$

$$C_{10} = \sum_{e_{k} = (v,u) \in E} |S_{v}| \cdot |S_{u}|$$

$$C_{10} = \sum_{e_{k} = (v,u) \in E} |S_{v}| \cdot |S_{u}|$$

$$C_{10} = \sum_{e_{k} = (v,u) \in E} |S_{v}| \cdot |S_{u}|$$

$$C_{10} = \sum_{e_{k} = (v,u) \in E} |S_{v}| \cdot |S_{u}|$$

$$C_{11} = \sum_{e_{k} = (v,u) \in E} |S_{v}| \cdot |S_{u}|$$

$$C_{12} = \sum_{e_{k} = (v,u) \in E} |S_{v}| \cdot |S_{u}|$$

$$C_{13} = \sum_{e_{k} = (v,u) \in E} |S_{v}| \cdot |S_{u}|$$

$$C_{14} = \sum_{e_{k} = (v,u) \in E} |S_{v}| \cdot |S_{u}|$$

$$C_{15} = \sum_{e_{k} = (v,u) \in E} |S_{v}| \cdot |S_{u}|$$

$$C_{10} = \sum_{e_{k} = (v,u) \in E} |S_{v}| \cdot |S_{u}|$$

$$C_{11} = \sum_{e_{k} = (v,u) \in E} |S_{v}| \cdot |S_{u}|$$

$$C_{12} = \sum_{e_{k} = (v,u) \in E} |S_{v}| \cdot |S_{u}|$$

$$C_{13} = \sum_{e_{k} = (v,u) \in E} |S_{v}| \cdot |S_{u}|$$

$$C_{14} = \sum_{e_{k} = (v,u) \in$$

Global counts

$$X_7 = \frac{1}{6} \cdot C_7$$
 $X_8 = C_8 - C_7$
 $X_9 = \frac{1}{2}(C_9 - 4X_8)$

$$X_{10} = \frac{1}{4} \cdot C_{10}$$
$$X_{11} = \frac{1}{3}(C_9 - X_9)$$

$$X_{12} = C_{12} - C_{10}$$

$$X_4 = 1/2 \cdot C_4$$
 3-graphlets

$$X_5 = C_5$$

$$X_6 = \binom{N}{3} - (X_3 + X_4 + X_5)$$

4-graphlets

$$X_{13} = \frac{1}{3} \cdot \left(C_{13} - X_9 \right)$$

$$X_{14} = \frac{1}{2} \cdot (C_{14} - 6X_7 - 4X_8 - 2X_9 - 4X_{10} - 2X_{12})$$

$$X_{15} = \frac{1}{2} \cdot (C_{15} - 2X_{12})$$

$$X_{16} = C_{16} - 2X_{14}$$

$$X_{17} = \binom{N}{4} - \sum X_i$$
 for $i = 7, \dots, 16$

Time Complexity

```
 \begin{array}{ll} \textbf{4-clique} & \mathcal{O}(K\Delta T_{\max}) \\ \textbf{4-cycle} & \mathcal{O}(K\Delta S_{\max}) \\ \textbf{tailed-tri} & \mathcal{O}(K\Delta S_{\max}) \\ & \textbf{all} & \mathcal{O}\big(K\Delta (S_{\max} + T_{\max})\big) \end{array}
```

K = number of edges

 Δ = max degree

 T_{max} = max number of **triangles** incident to an edge in G

 S_{max} = max number of **2-stars** incident to an edge in G

Experiments

Connected 4-graphlet frequencies for a variety of the real-world networks investigated from different domains.

		Connected Graphlets					
Network type	graph	\boxtimes	\square	\square		abla	П
Facebook networks	socfb-Texas84 socfb-UF socfb-MIT socfb-Stanford3 socfb-Wisc87 socfb-Indiana	70.7M 98M 13.7M 37.1M 23M 60.2M	376M 433M 88.5M 226M 121M 269M	1.2B 708M 909M 659M 1.9B 1.6B	215M 186M 50.9M 151M 59.3M 141M	664M 778M 498M 600M 1.3B 495M	3.9B 874M 3.8B 1.8B 3.8B 3.9B
Social networks	soc-flickr soc-google-plus soc-youtube soc-livejournal soc-twitter soc-orkut	311M 186M 3.8M 307M 430M 280M	1B 994M 156M 1.9B 2.3B 3.2B	208M 204M 1.2B 1.8B 1.7B 953M	252M 463M 162M 465M 990M 595M	1.2B 668M 1B 778M 314M 520M	3.7B 3.7B 2.3B 3.5B 1.9B 2B
Interaction networks	ia-enron-large ia-wiki-Talk	2.3M 2.2M	$\begin{array}{c} 22.5\mathrm{M} \\ 32.3\mathrm{M} \end{array}$	376M 668M	6.8M $33.8M$	185M 766M	1.4B 1.5B
Collaboration networks	ca-HepPh	150M	35.2M	462M	821k	143M	204M
Brain networks	brain-mouse-ret1	71.4M	303M	1.1B	47.4M	1.1B	1.1B
Web graphs	web-baidu-baike web-arabic05	$\begin{array}{c} 27.8 \mathrm{M} \\ 232 \mathrm{M} \end{array}$	$\frac{248\mathrm{M}}{3.4\mathrm{M}}$	476M $26.5M$	$653{ m M} \ 79.2{ m k}$	1.3B 490M	1.2B $27.3M$
Technological/IP networks	tech-as-skitter	149M	2.4B	571M	817M	808M	2.8B
Dense hard benchmark graphs	C500-9 p-hat1000-1	656M 20.3M	909M 265M	201M 1.3B	50.2M 282M	7.3M 1.2B	22.3M 3B

Validating edge partitioning

- Edges partitioned by "hardness"
- GPUs assigned sparser neighborhoods
- Assigns edge neighborhoods to "best" processor type
- Importance of initial ordering

CPU workers assigned difficult

GPU workers assigned easy & balanced edge neighborhoods (approx. equal runtimes)

Experiments: Improvement

GPU: Uses a single multi-core GPU

Multi-GPU: Uses all available GPUs

Hybrid: Leverages all multi-core CPUs & GPUs

Speedup (times faster) MULTI-GPU GPU \mathbf{graph} \mathbb{K} HYBRID Δ $\Delta_{
m gpu}$ α socfb-Texas84 81 6312 4.65x263.26x 450 0.03121.91xsocfb-UF 83 8246 370 0.051.6x55.65x165.63xsocfb-MIT 72708 11.98x28.47x266 0.7106.14xsocfb-Stanford3 91 1172365 0.0521.07x63x133.15x0.0417.88x 142.41x socfb-Wisc87 60 3484 300 189.08xsocfb-Indiana 76 1358329 0.0422.25x96.89x207.11xsoc-flickr 309 4369 7.32x102.24x4196 0.0431.85x11.98xsoc-google-plus 135 1790 328 0.074.95x56.03xsoc-youtube 49 25409 1079 0.07 3.87x26.82x180.64xsoc-brightkite 52 1134 132 0.122.51x8.09x17.67xsoc-livejournal 213 2651 157 0.058.92x70.01x98.83xsoc-twitter 125 51386 13533 0.052.68x21.76x372.72xsoc-orkut 230 27466 646 0.056.12x57.71x 129.26x2.94x10.79xia-enron-large 43 1383 243 0.17628.30xia-wiki-Talk 58 1220 1034 0.0223.35x37.50x85.46xca-HepPh 238 491 1.42x17.14x169 0.356.62xbrain-mouse-ret1 121 744 712 3.21x5.14x0.2632.71xweb-baidu-baike 78 97848 11919 0.034.83x39.55x156.45xweb-arabic05 101 1102 0.145.19x29.51x60.02x Runtime improvement over state-of-the-art

2 Intel Xeon CPUs (E5-2687) -

• 8 cores (3.10Ghz)

8 Titan Black NVIDIA GPUs -

• 2880 cores (889 Mhz), ~6GB

Experiments: Improvement

GPU: Uses a single multi-core GPU

Multi-GPU: Uses all available GPUs

Hybrid: Leverages all multi-core CPUs & GPUs

					Speedup (times faster)			
1-	πл	٨	A		CDII	MULTI-	Hyppyp	
graph	K	Δ	$\Delta_{ m gpu}$	α	GPU	GPU	Hybrid	
socfb-Texas84	81	6312	450	0.031	4.65x	21.91x	263.26x	
socfb-UF	83	8246	370	0.05	1.6x	55.65x	165.63x	
socfb-MIT	72	708	266	0.7	11.98x	28.47x	106.14x	
socfb-Stanford3	91	1172	365	0.05	21.07x	63x	133.15x	
socfb-Wisc87	60	3484	300	0.04	17.88x	142.41x	189.08x	
socfb-Indiana	76	1358	329	0.04	22.25x	96.89x	207.11x	
soc-flickr	309	4369	4196	0.04	7.32x	31.85x	102.24x	
soc-google-plus	135	1790	328	0.07	4.95x	11.98x	56.03x	
soc-youtube	49	25409	1079	0.07	3.87x	26.82x	180.64x	
soc-brightkite	52	1134	132	0.12	2.51x	8.09x	17.67×	
soc-livejournal	213	2651	157	0.05	8.92x	70.01x	98.83x	
soc-twitter	125	51386	13533	0.05	2.68x	21.76x	372.72x	
soc-orkut	230	27466	646	0.05	6.12x	57.71x	129.26x	
ia-enron-large	43	1383	243	0.176	2.94x	10.79x	28.30x	
ia-wiki-Talk	58	1220	1034	0.02	23.35x	37.50x	85.46x	
ca-HepPh	238	491	169	0.35	1.42x	6.62×	17.14x	
brain-mouse-ret1	121	744	712	0.26	3.21x	5.14x	32.71x	
web-baidu-baike	78	97848	11919	0.03	4.83x	39.55x	156.45x	
web-arabic05	101	1102	49	0.14	5.19x	29.51x	60.02x	

Runtime improvement over state-of-the-art

Improvement:

significant at $\alpha = 0.01$

Experiments: Improvement

GPU: Uses a single multi-core GPU

Multi-GPU: Uses all available GPUs

Hybrid: Leverages all multi-core CPUs & GPUs

ci-core CPUs & GPUs

Speedup (times faster)

GPU GPU HYBRID

4.65x 21.91x 263.26x

Significant at $\alpha = 0.01$

Runtime improvement

					Specu	S Idstel)	
graph	\mathbb{K}	Δ	$\Delta_{ m gpu}$	α	GPU	MULTI- GPU	Hybrid
socfb-Texas84	81	6312	450	0.031	4.65x	21.91x	263.26x
socfb-UF	83	8246	370	0.05	1.6x	55.65x	165.63x
socfb-MIT	72	708	266	0.7	11.98x	28.47x	106.14x
socfb-Stanford3	91	1172	365	0.05	21.07x	63x	133.15x
socfb-Wisc87	60	3484	300	0.04	17.88x	142.41x	189.08x
socfb-Indiana	76	1358	329	0.04	22.25x	96.89x	207.11x
soc-flickr	309	4369	4196	0.04	7.32x	31.85x	102.24x
soc-google-plus	135	1790	328	0.07	4.95x	11.98x	56.03×
soc-youtube	49	25409	1079	0.07	3.87x	26.82x	180.64x
soc-brightkite	52	1134	132	0.12	2.51x	8.09x	17.67×
soc-livejournal	213	2651	157	0.05	8.92x	70.01x	98.83x
soc-twitter	125	51386	13533	0.05	2.68x	21.76x	372.72x
soc-orkut	230	27466	646	0.05	6.12x	57.71x	129.26x
ia-enron-large	43	1383	243	0.176	2.94x	10.79x	28.30x
ia-wiki-Talk	58	1220	1034	0.02	23.35x	37.50x	85.46x
ca-HepPh	238	491	169	0.35	1.42x	6.62x	17.14x
brain-mouse-ret1	121	744	712	0.26	3.21x	5.14x	32.71x
web-baidu-baike	78	97848	11919	0.03	4.83x	39.55x	156.45x
web-arabic05	101	1102	49	0.14	5.19x	29.51x	60.02×

MEAN 8x 40x 126x

Comparing ORCA-GPU methods

• Significant improvement over Orca-GPU (at $\alpha = 0.01$)

Many problems with Orca-GPU:

- No "effective parallelization", many parts dependent
- Requires synchronization throughout, locks
- No fine-grained parallelization

Varying the edge ordering

$$ext{vol}(e_k) = ext{vol}(u,v) = \sum_{w \in \Gamma(u,v)} d_w$$
 $ext{Descending Reverse order}$ $ext{d}$ $ext{d}$ $ext{vol}$ $ext{d}^{-1}$ $ext{vol}$ $ext{vol}$ $ext{socfb-Texas84}$ $ext{263.3x}$ $ext{284.1x}$ $ext{23.5x}$ $ext{10.8x}$

Ordering strategy significantly impacts performance

Space-efficient & comm. avoidance

Average memory (MB) per GPU for three networks.

Applications

Ranking/spotting Large Stars via Graphlets

Ranking/spotting Large Stars via Graphlets

Summary

Framework & Algorithms

- Introduced hybrid graphlet counting approach that leverages all available CPUs & GPUs
- First hybrid CPU-GPU approach for graphlet counting
- On average 126x faster than current methods
 - Edge-centric computations (only requires access to edge neighborhood)
- Time and space-efficient

Applications

Visual analytics and real-time graphlet mining

Thanks!

Questions?

Data: http://networkrepository.com

Research generously supported by:

