

Graphs – rich and powerful
data representation

-
-
-
-
-

Social network

Human Disease Network
[Barabasi 2007]

Food Web [2007]

Terrorist Network
[Krebs 2002]Internet (AS) [2005]

Gene Regulatory Network
[Decourty 2008]

Protein Interactions
[breast cancer]

Political blogs

Power grid

Graphlets

H13 H14 H15 H16 H17H6H2

H7 H8 H9 H10 H11 H12H4H1 H3

H5

1

0

0.5

0.83
0.67

0.33
0.17

Network Motifs: Simple Building Blocks of Complex Networks [Milo et. al – Science 2002]
The Structure and Function of Complex Networks [Newman – Siam Review 2003]

Small induced subgraphs

Graphlets

H13 H14 H15 H16 H17H6H2

H7 H8 H9 H10 H11 H12H4H1 H3

H5

1

0

0.5

0.83
0.67

0.33
0.17

Connected

Disconnected

Network Motifs: Simple Building Blocks of Complex Networks [Milo et. al – Science 2002]
The Structure and Function of Complex Networks [Newman – Siam Review 2003]

Small induced subgraphs

Graphlets

k-graphlets = family of graphlets of size k

2-graphlets 3-graphlets 4-graphlets

H13 H14 H15 H16 H17H6H2

H7 H8 H9 H10 H11 H12H4H1 H3

H5

1

0

0.5

0.83
0.67

0.33
0.17

Connected

Disconnected

Network Motifs: Simple Building Blocks of Complex Networks [Milo et. al – Science 2002]
The Structure and Function of Complex Networks [Newman – Siam Review 2003]

Small induced subgraphs

Graphlets

k-graphlets = family of graphlets of size k

motifs = frequently occurring subgraphs

2-graphlets 3-graphlets 4-graphlets

H13 H14 H15 H16 H17H6H2

H7 H8 H9 H10 H11 H12H4H1 H3

H5

1

0

0.5

0.83
0.67

0.33
0.17

Connected

Disconnected

Network Motifs: Simple Building Blocks of Complex Networks [Milo et. al – Science 2002]
The Structure and Function of Complex Networks [Newman – Siam Review 2003]

Small induced subgraphs

Graphlets

k-graphlets = family of graphlets of size k

motifs = frequently occurring subgraphs

Applied to food web, genetic, neural, web, and other networks
Found distinct graphlets in each case

2-graphlets 3-graphlets 4-graphlets

H13 H14 H15 H16 H17H6H2

H7 H8 H9 H10 H11 H12H4H1 H3

H5

1

0

0.5

0.83
0.67

0.33
0.17

Connected

Disconnected

Network Motifs: Simple Building Blocks of Complex Networks [Milo et. al – Science 2002]
The Structure and Function of Complex Networks [Newman – Siam Review 2003]

Small induced subgraphs

• Biological Networks
⎻ network alignment, protein function prediction

[Pržulj 2007][Milenković-Pržulj 2008] [Hulovatyy-Solava-Milenković 2014]
[Shervashidze et al. 2009][Vishwanathan et al. 2010]

• Social Networks
⎻ Triad analysis, role discovery, community detection

[Granovetter 1983][Holland-Leinhardt 1976][Rossi-Ahmed 2015]
[Ahmed et al. 2015][Xie-Kelley-Szymanski 2013]

• Internet AS [Feldman et al. 2008]

• Spam Detection
[Becchetti et al. 2008][Ahmed et al. 2016]

Applications of Graphlets

Useful for various machine learning tasks
e.g., Anomaly detection, Role Discovery, Relational Learning, Clustering etc.

Useful for a variety of ML tasks

• Graph-based anomaly detection
⎻ Unusual/malicious behavior detection
⎻ Emerging event and threat identification, …

• Graph-based semi-supervised learning, classification, …
• Link prediction and relationship strength estimation
• Graph similarity queries

⎻ Find similar nodes, edges, or graphs

• Subgraph detection and matching

Applications:
Higher-order network analysis and modeling

Higher-order network structures
• Visualization – “spotting anomalies” [Ahmed et al.

ICDM 2014]

• Finding large cliques, stars, and other larger
network structures [Ahmed et al. KAIS 2015]

• Spectral clustering [Jure et al. Science 2016]

• Role discovery [Ahmed et al. 2016]

...

How
CPU/GPUs
compare

CPU GPU
Large memory Memory is very limited

Few fast/powerful processing units Thousands of smaller processing units

Handles unbalanced jobs better Performs best with “balanced” workloads

Optimized for general computations Optimized for simple repetitive calculations
at a very fast rate.

How
CPU/GPUs
compare

CPU GPU
Large memory Memory is very limited

Few fast/powerful processing units Thousands of smaller processing units

Handles unbalanced jobs better Performs best with “balanced” workloads

Optimized for general computations Optimized for simple repetitive calculations
at a very fast rate.

Combine advantages of both

INPUT: a large graph G=(V,E), set of graphlets 𝓗
PROBLEM: Find the number of embeddings
(appearances) of each graphlet𝐻. ∈ 𝓗	in G

Problem: global graphlet counting
(macro-level)

INPUT: a large graph G=(V,E), set of graphlets 𝓗
PROBLEM: Find the number of embeddings
(appearances) of each graphlet𝐻. ∈ 𝓗	in G

Problem: global graphlet counting
(macro-level)

Given an input graph G
- How many triangles in G?
- How many cliques of size 4-nodes in G?
- How many cycles of size 4-nodes in G?

INPUT: a large graph G=(V,E), set of graphlets 𝓗
PROBLEM: Find the number of embeddings
(appearances) of each graphlet𝐻. ∈ 𝓗	in G

Problem: global graphlet counting
(macro-level)

Given an input graph G
- How many triangles in G?
- How many cliques of size 4-nodes in G?
- How many cycles of size 4-nodes in G?

à Many applications require counting all k-vertex graphlets

à Recent research work
- Exact/approximation of global counts [Rahman et al. TKDE14] [Jha et al. WWW15]
- Scalable for massive graphs (billions of nodes/edges)] [Ahmed et al. ICDM15,KAIS16]

INPUT: a large graph G=(V,E), set of graphlets ℋ
PROBLEM: Find the number of occurrences that
edge i is contained within 𝐻., for all k = 1,… , |ℋ|

Role discovery, Relational Learning, Multi-label Classification

Problem: local graphlet counting
(micro-level)

Current work

• Enumerate all possible graphlets
- Exhaustive enumeration is too expensive

• Count graphlets for each node
- Expensive for large k [Shervashidze et al. – AISTAT 2009]

àNot practical – scales only for graphs with few hundred/thousand nodes/edges

[Hočevar et al. – Bioinfo. 13]

Sequential

Current work

• Enumerate all possible graphlets
- Exhaustive enumeration is too expensive

• Count graphlets for each node
- Expensive for large k [Shervashidze et al. – AISTAT 2009]

àNot practical – scales only for graphs with few hundred/thousand nodes/edges

[Hočevar et al. – Bioinfo. 13]

Sequential

Parallel

• Edge-centric graphlet counting (PGD)
⎻ Multi-core CPUs, large graphs

[Ahmed et al. ICDM 14, KAIS 15]

Current work

• Enumerate all possible graphlets
- Exhaustive enumeration is too expensive

• Count graphlets for each node
- Expensive for large k [Shervashidze et al. – AISTAT 2009]

àNot practical – scales only for graphs with few hundred/thousand nodes/edges

[Hočevar et al. – Bioinfo. 13]

Sequential

Parallel

• Edge-centric graphlet counting (PGD)
⎻ Multi-core CPUs, large graphs

• Node-centric graphlet counting,
⎻ Single GPU, Handles only tiny graphs (ORCA-GPU)

[Ahmed et al. ICDM 14, KAIS 15]

[Milinković et al.]

Our approach
Hybrid parallel graphlet counting framework that
leverages all available CPUs and GPUs

Parallel	Graphlet	
Counting	Framework

Single	GPU
methods

Multi-GPU
methods	

Hybrid	CPU-GPU	
methods

Algorithm classes

Our approach
Hybrid parallel graphlet
counting framework that
leverages all available
CPUs & GPUs

Hybrid	Parallel	
Graphlet	Counting	

Framework

Multi-GPU
methods	

Hybrid	CPU-GPU	
methods

Algorithm classes

Single	GPU
methods

Other key advantages:
• Edge-centric parallelization

⎻ Improved load balancing & lock-free

• Global and local graphlet counts
• Connected and disconnected graphlets
• Fine-grained parallelization
• Space-efficient
⫶

e

Overview of our approach

uv

SuSv

…
 T

uv

…

Ec
EDGE

Overview

nodes completing a triangle with edge (v, u)T =

nodes that form a 2-star with v (u)Sv (Su) =

Edge-centric, Parallel, Fast,
Space-efficient Framework

Our Approach –
(Edge-centric, parallel, space-efficient)

Searching Edge
Neighborhoods

For each edge
Find the triangles

Step 1

Our Approach –
(Edge-centric, parallel, space-efficient)

Searching Edge
Neighborhoods

For each edge
Find the triangles

Count a few
k-graphlets

For each edge,
count only:

k-cliques

k-cycles

tailed-triangles

Step 1 Step 2

Our Approach –
(Edge-centric, parallel, space-efficient)

Searching Edge
Neighborhoods

For each edge
Find the triangles

Count a few
k-graphlets

For each edge,
count only:

Count all other
graphlets

For each edge, use

combinatorial
relationships

to derive counts
of other graphlets

in constant time o(1)

k-cliques

k-cycles

tailed-triangles

Step 1 Step 2 Step 3

Our Approach – (Edge-centric, parallel, space-efficient)

Searching Edge
Neighborhoods

For each edge
Find the triangles

Count a few
k-graphlets

For each edge,
count only:

Count all other
graphlets

For each edge, use

combinatorial
relationships

to derive counts
of other graphlets

in constant time o(1)

k-cliques

k-cycles

tailed-triangles

Step 1 Step 2 Step 3

Step 4 Merge all counts

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Edges

T
im

e
 in

 s
e

co
n

d
s

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Edges

T
im

e
 in

 s
e

co
n

d
s

neighborhood runtimes (CPU)

Key Observations

Neighborhood runtimes
are power-lawed

The distribution of
graphlet runtimes for
edge neighborhoods
obey a power-law.

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Edges

T
im

e
 in

 s
e

co
n

d
s

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Edges

T
im

e
 in

 s
e

co
n

d
s

Most edge neighborhoods are fast with
runtimes that are approximately equal.

Key Observations

The distribution of
graphlet runtimes for
edge neighborhoods
obey a power-law.

Neighborhood runtimes
are power-lawed

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Edges

T
im

e
 in

 s
e

co
n

d
s

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Edges

T
im

e
 in

 s
e

co
n

d
s

HOWEVER, a handful of neighborhoods
are hard and take significantly longer.

Most edge neighborhoods are fast with
runtimes that are approximately equal.

Key Observations

The distribution of
graphlet runtimes for
edge neighborhoods
obey a power-law.

Neighborhood runtimes
are power-lawed

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Edges

T
im

e
 in

 s
e

co
n

d
s

0 2 4 6 8 10

x 10
4

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Edges

T
im

e
 in

 s
e

co
n

d
s

HOWEVER, a handful of neighborhoods
are hard and take significantly longer.

Most edge neighborhoods are fast with
runtimes that are approximately equal.

Key Observations

The distribution of
graphlet runtimes for
edge neighborhoods
obey a power-law.

Neighborhood runtimes
are power-lawed

QUESTION:
What is the “best” way to
partition neighborhoods
among CPUs and GPUs?
• “hardness” proxy à

edge deg., vol., ...

Our approach

• Order edges by “hardness” and partition into 3 sets:

Γ e< Γ e=Γ e>Γ e.

⋯ ⋯ ⋯

Π@AB ΠCAB

Our approach

• Order edges by “hardness” and partition into 3 sets:

• Compute induced subgraphs centered at each edge
• CPU Workers: use hash table for o(1) lookups, O(N)
• GPU Workers: use binary search for o(log d) lookups

• When finished, dequeue next b edges:
• CPU: get b edges from FRONT of ΠBDAEF@
• GPU: get b edges from BACK of ΠBDAEF@

Preprocessing steps

Three simple and efficient preprocessing steps:

1) Sort vertices from smallest to largest degree 𝑓(I)	and
relabel them s.t. 	𝑓 v< 	≤ ⋯ ≤ 𝑓 vM

Preprocessing steps

Three simple and efficient preprocessing steps:

1) Sort vertices from smallest to largest degree 𝑓(I)	and
relabel them s.t. 	𝑓 v< 	≤ ⋯ ≤ 𝑓 vM

2) For each Γ vN , ∀𝑖 = 1,… , N, order the set of neighbors
Γ vN = … ,w>, … ,w. , … from smallest to largest deg.

Preprocessing steps

Three simple and efficient preprocessing steps:

1) Sort vertices from smallest to largest degree 𝑓(I)	and
relabel them s.t. 	𝑓 v< 	≤ ⋯ ≤ 𝑓 vM

2) For each Γ vN , ∀𝑖 = 1,… , N, order the set of neighbors
Γ vN = … ,w>, … ,w. , … from smallest to largest deg.

3) Given edge (v, u) ∈ E, ensure that 𝑓 v ≥ 𝑓 u
⎻ hence, v is always the vertex with largest degree, dv ≥ du

Preprocessing steps

•All of these steps are not required, but significantly improve
• Each step is extremely fast and lends itself to easy parallelization

Three simple and efficient preprocessing steps:

1) Sort vertices from smallest to largest degree 𝑓(I)	and
relabel them s.t. 	𝑓 v< 	≤ ⋯ ≤ 𝑓 vM

2) For each Γ vN , ∀𝑖 = 1,… , N, order the set of neighbors
Γ vN = … ,w>, … ,w. , … from smallest to largest deg.

3) Given edge (v, u) ∈ E, ensure that 𝑓 v ≥ 𝑓 u
⎻ hence, v is always the vertex with largest degree, dv ≥ du

Fine Granularity & Work Stealing

For a single edge (v,	u)	∈	E,
I. Compute the sets 𝐓 and 𝐒𝐮
II. Find the total 4-cliques using T

III. Find the total 4-cycles using 𝐒𝐮

NOTE: (II) and (III) are independent à parallelize

Unrestricted counts

3-graphlets

4-graphlets

De = N −(|Sv|+ |Su| + |T|) − 2

Global counts

4-graphlets

3-graphlets

Time Complexity

K	= number of edges
Δ = max degree

T[\] = max number of triangles incident to an edge in G

S[\] = max number of 2-stars incident to an edge in G

Experiments

Connected 4-graphlet frequencies for a variety of the real-world
networks investigated from different domains.

Facebook networks

Social networks

Interaction networks

Network type

Collaboration networks
Brain networks

Web graphs
Technological/IP networks

Dense hard benchmark graphs

Validating edge
partitioning

0 2 4 6
x 104

0

0.05

0.1

0.15

0.2

Edge neighborhoods

Ti
m

e
(m

s)

CPU
GPU

0 2 4 6
x 104

0

0.05

0.1

0.15

0.2

Edge neighborhoods

Ti
m

e
(m

s)

• Edges partitioned by
“hardness”
• GPUs assigned sparser

neighborhoods
• Assigns edge neighborhoods

to “best” processor type
• Importance of initial

ordering

GPU workers assigned easy & balanced edge
neighborhoods (approx. equal runtimes)

CPU workers assigned difficult
unbalanced/skewed neighborhoods

Experiments: Improvement
Runtime	improvement	
over	state-of-the-art

GPU: Uses	a	single	multi-core	GPU
Multi-GPU: Uses	all	available	GPUs

Hybrid: Leverages	all	multi-core	CPUs	&	GPUs

2 Intel Xeon CPUs (E5-2687) –
• 8 cores (3.10Ghz)

8 Titan Black NVIDIA GPUs –
• 2880 cores (889 Mhz), ~6GB

Experiments: Improvement
Runtime	improvement	
over	state-of-the-art

Improvement:
significant at α = 0.01

GPU: Uses	a	single	multi-core	GPU
Multi-GPU: Uses	all	available	GPUs

Hybrid: Leverages	all	multi-core	CPUs	&	GPUs

Experiments: Improvement
Runtime	improvement	
over	state-of-the-art

Improvement:
significant at α = 0.01

MEAN 8x 40x 126x

GPU: Uses	a	single	multi-core	GPU
Multi-GPU: Uses	all	available	GPUs

Hybrid: Leverages	all	multi-core	CPUs	&	GPUs

Comparing ORCA-GPU methods

Orca−GPU Orca−GPU−S3

BA ER GEO
0

20
40
60
80

100
120
140
160
180
200

Many problems with Orca-GPU:
• No “effective parallelization”, many parts dependent
• Requires synchronization throughout, locks
• No fine-grained parallelization

• Significant improvement
over Orca-GPU (at 𝛼 =
0.01)

Orca-GPU runtime /
runtime of proposed
method

Im
pr

ov
em

en
t o

ve
r O

rc
a-

G
PU

Varying the edge ordering

Ordering strategy significantly impacts performance

Space-efficient & comm. avoidance

fb−Texas84 flickr as−skitter
0

50

100

150

200

250

M
em

or
y

Graph
T and S
Set of edges

fb−Texas84 flickr as−skitter
0

50

100

150

200

250

M
em

or
y

Average memory (MB) per GPU for three networks.

Applications

Ranking/spotting Large Cliques via
Graphlets

Ranking/spotting Large Cliques via
Graphlets

Ranking/spotting Large Cliques via
Graphlets

Ranking/spotting Large Cliques via
Graphlets

Ranking/spotting Large Stars via
Graphlets

Ranking/spotting Large Stars via
Graphlets

Framework & Algorithms
• Introduced hybrid graphlet counting approach that leverages all

available CPUs & GPUs
• First hybrid CPU-GPU approach for graphlet counting
• On average 126x faster than current methods
- Edge-centric computations (only requires access to edge neighborhood)

• Time and space-efficient

Applications
• Visual analytics and real-time graphlet mining

Summary

Research generously supported by:

Data: http://networkrepository.com

