


Graphs – rich and powerful 
data representation

-
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Social network 

Human Disease Network 
[Barabasi 2007]

Food Web [2007]

Terrorist Network
[Krebs 2002]Internet (AS) [2005]

Gene Regulatory Network 
[Decourty 2008]

Protein Interactions 
[breast cancer]

Political blogs

Power grid
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Graphlets

k-graphlets = family of graphlets of size k
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Graphlets

k-graphlets = family of graphlets of size k

motifs = frequently occurring subgraphs
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Graphlets

k-graphlets = family of graphlets of size k

motifs = frequently occurring subgraphs

Applied to food web, genetic, neural, web, and other networks
Found distinct graphlets in each case
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• Biological Networks 
⎻ network alignment, protein function prediction

[Pržulj 2007][Milenković-Pržulj 2008] [Hulovatyy-Solava-Milenković 2014]
[Shervashidze et al. 2009][Vishwanathan et al. 2010]

• Social Networks 
⎻ Triad analysis, role discovery, community detection

[Granovetter 1983][Holland-Leinhardt 1976][Rossi-Ahmed 2015]
[Ahmed et al. 2015][Xie-Kelley-Szymanski 2013] 

• Internet AS [Feldman et al. 2008]

• Spam Detection
[Becchetti et al. 2008][Ahmed et al. 2016]

Applications of Graphlets

Useful for various machine learning tasks
e.g., Anomaly detection, Role Discovery, Relational Learning, Clustering etc.  



Useful for a variety of ML tasks

• Graph-based anomaly detection 
⎻ Unusual/malicious behavior detection
⎻ Emerging event and threat identification, …

• Graph-based semi-supervised learning, classification, …
• Link prediction and relationship strength estimation
• Graph similarity queries

⎻ Find similar nodes, edges, or graphs

• Subgraph detection and matching



Applications: 
Higher-order network analysis and modeling

Higher-order network structures
• Visualization – “spotting anomalies” [Ahmed et al. 

ICDM 2014]

• Finding large cliques, stars, and other larger 
network structures [Ahmed et al. KAIS 2015]

• Spectral clustering [Jure et al. Science 2016]

• Role discovery [Ahmed et al. 2016]

...



How 
CPU/GPUs 
compare 

CPU GPU
Large memory Memory is very limited

Few fast/powerful processing units Thousands of smaller processing units

Handles unbalanced jobs better Performs best with “balanced” workloads

Optimized for general computations Optimized for simple repetitive calculations 
at a very fast rate.



How 
CPU/GPUs 
compare 

CPU GPU
Large memory Memory is very limited

Few fast/powerful processing units Thousands of smaller processing units

Handles unbalanced jobs better Performs best with “balanced” workloads

Optimized for general computations Optimized for simple repetitive calculations 
at a very fast rate.

Combine advantages of both



INPUT: a large graph G=(V,E), set of graphlets 𝓗
PROBLEM: Find the number of embeddings
(appearances) of each graphlet𝐻. ∈ 𝓗	in G

Problem: global graphlet counting
(macro-level)
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INPUT: a large graph G=(V,E), set of graphlets 𝓗
PROBLEM: Find the number of embeddings
(appearances) of each graphlet𝐻. ∈ 𝓗	in G

Problem: global graphlet counting
(macro-level)

Given an input graph G
- How many triangles in G?
- How many cliques of size 4-nodes in G?
- How many cycles of size 4-nodes in G?

à Many applications require counting all k-vertex graphlets

à Recent research work 
- Exact/approximation of global counts [Rahman et al. TKDE14] [Jha et al. WWW15]
- Scalable for massive graphs (billions of nodes/edges) ] [Ahmed et al. ICDM15,KAIS16]



INPUT: a large graph G=(V,E), set of graphlets ℋ
PROBLEM: Find the number of occurrences that 
edge i is contained within 𝐻., for all k = 1,… , |ℋ|

Role discovery, Relational Learning, Multi-label Classification

Problem: local graphlet counting
(micro-level)



Current work

• Enumerate all possible graphlets
- Exhaustive enumeration is too expensive 

• Count graphlets for each node
- Expensive for large k [Shervashidze et al. – AISTAT 2009]

àNot practical – scales only for graphs with few hundred/thousand nodes/edges

[Hočevar et al. – Bioinfo. 13]
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Current work

• Enumerate all possible graphlets
- Exhaustive enumeration is too expensive 

• Count graphlets for each node
- Expensive for large k [Shervashidze et al. – AISTAT 2009]

àNot practical – scales only for graphs with few hundred/thousand nodes/edges

[Hočevar et al. – Bioinfo. 13]

Sequential

Parallel

• Edge-centric graphlet counting (PGD) 
⎻ Multi-core CPUs, large graphs

• Node-centric graphlet counting, 
⎻ Single GPU, Handles only tiny graphs (ORCA-GPU)

[Ahmed et al. ICDM 14, KAIS 15]

[Milinković et al.]



Our approach
Hybrid parallel graphlet counting framework that 
leverages all available CPUs and GPUs 

Parallel	Graphlet	
Counting	Framework

Single	GPU
methods

Multi-GPU
methods	

Hybrid	CPU-GPU	
methods

Algorithm classes



Our approach
Hybrid parallel graphlet
counting framework that 
leverages all available 
CPUs & GPUs

Hybrid	Parallel	
Graphlet	Counting	

Framework

Multi-GPU
methods	

Hybrid	CPU-GPU	
methods

Algorithm classes

Single	GPU
methods

Other key advantages:
• Edge-centric parallelization

⎻ Improved load balancing & lock-free

• Global and local graphlet counts
• Connected and disconnected graphlets
• Fine-grained parallelization
• Space-efficient
⫶

e



Overview of our approach
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Overview

nodes completing a triangle with edge (v, u)T =

nodes that form a 2-star with v (u)Sv (Su) =

Edge-centric, Parallel, Fast, 
Space-efficient Framework 



Our Approach –
(Edge-centric, parallel, space-efficient)

Searching Edge 
Neighborhoods

For each edge 
Find the triangles

Step 1



Our Approach –
(Edge-centric, parallel, space-efficient)

Searching Edge 
Neighborhoods

For each edge 
Find the triangles

Count a few 
k-graphlets

For each edge, 
count only:

k-cliques

k-cycles

tailed-triangles

Step 1 Step 2



Our Approach –
(Edge-centric, parallel, space-efficient)

Searching Edge 
Neighborhoods

For each edge 
Find the triangles

Count a few 
k-graphlets

For each edge, 
count only:

Count all other 
graphlets

For each edge, use 

combinatorial  
relationships 

to derive counts 
of other graphlets

in constant time o(1)
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Our Approach – (Edge-centric, parallel, space-efficient)

Searching Edge 
Neighborhoods

For each edge 
Find the triangles

Count a few 
k-graphlets

For each edge, 
count only:

Count all other 
graphlets

For each edge, use 

combinatorial  
relationships 

to derive counts 
of other graphlets

in constant time o(1)

k-cliques

k-cycles

tailed-triangles

Step 1 Step 2 Step 3

Step 4 Merge all counts
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neighborhood runtimes (CPU)

Key Observations

Neighborhood runtimes 
are power-lawed

The distribution of
graphlet runtimes for
edge neighborhoods
obey a power-law.
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Most edge neighborhoods are fast with 
runtimes that are approximately equal. 

Key Observations

The distribution of
graphlet runtimes for
edge neighborhoods
obey a power-law.

Neighborhood runtimes 
are power-lawed
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HOWEVER, a handful of neighborhoods 
are hard and take significantly longer. 

Most edge neighborhoods are fast with 
runtimes that are approximately equal. 

Key Observations

The distribution of
graphlet runtimes for
edge neighborhoods
obey a power-law.

Neighborhood runtimes 
are power-lawed
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HOWEVER, a handful of neighborhoods 
are hard and take significantly longer. 

Most edge neighborhoods are fast with 
runtimes that are approximately equal. 

Key Observations

The distribution of
graphlet runtimes for
edge neighborhoods
obey a power-law.

Neighborhood runtimes 
are power-lawed

QUESTION: 
What is the “best” way to 
partition neighborhoods 
among CPUs and GPUs?
• “hardness” proxy à

edge deg.,  vol., ...



Our approach

• Order edges by “hardness” and partition into 3 sets:

Γ e< Γ e=Γ e>Γ e.

⋯ ⋯ ⋯

Π@AB ΠCAB



Our approach

• Order edges by “hardness” and partition into 3 sets:

• Compute induced subgraphs centered at each edge
• CPU Workers: use hash table for o(1) lookups, O(N) 
• GPU Workers: use binary search for o(log d) lookups

• When finished, dequeue next b edges:
• CPU: get b edges from FRONT of ΠBDAEF@
• GPU: get b edges from BACK of ΠBDAEF@



Preprocessing steps

Three simple and efficient preprocessing steps:

1) Sort vertices from smallest to largest degree 𝑓(I)	and 
relabel them s.t. 	𝑓 v< 	≤ ⋯ ≤ 𝑓 vM
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Preprocessing steps

•All of these steps are not required,  but significantly improve
• Each step is extremely fast and lends itself to easy parallelization

Three simple and efficient preprocessing steps:

1) Sort vertices from smallest to largest degree 𝑓(I)	and 
relabel them s.t. 	𝑓 v< 	≤ ⋯ ≤ 𝑓 vM

2) For each Γ vN , ∀𝑖 = 1,… , N, order the set of  neighbors 
Γ vN = … ,w>, … ,w. , … from smallest to largest deg.

3) Given edge (v, u) ∈ E, ensure that 𝑓 v ≥ 𝑓 u
⎻ hence, v is always the vertex with largest degree, dv ≥ du



Fine Granularity & Work Stealing

For a single edge (v,	u)	∈	E,
I. Compute the sets 𝐓 and 𝐒𝐮
II. Find the total 4-cliques using T

III. Find the total 4-cycles using 𝐒𝐮

NOTE: (II) and (III) are independent à parallelize



Unrestricted counts

3-graphlets

4-graphlets

De = N −(|Sv|+ |Su| + |T|) − 2



Global counts

4-graphlets

3-graphlets



Time Complexity

K	= number of edges
Δ = max degree

T[\] = max number of triangles incident  to an edge in G

S[\] = max number of 2-stars incident to an edge in G 



Experiments



Connected 4-graphlet frequencies for a variety of the real-world 
networks investigated from different domains. 

Facebook networks

Social networks

Interaction networks

Network type

Collaboration networks
Brain networks

Web graphs
Technological/IP networks

Dense hard benchmark graphs



Validating edge 
partitioning
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• Edges partitioned by 
“hardness”
• GPUs assigned sparser 

neighborhoods
• Assigns edge neighborhoods 

to “best” processor type
• Importance of initial 

ordering

GPU workers assigned easy & balanced edge 
neighborhoods (approx. equal runtimes)

CPU workers assigned difficult 
unbalanced/skewed neighborhoods



Experiments: Improvement
Runtime	improvement	
over	state-of-the-art

GPU: Uses	a	single	multi-core	GPU
Multi-GPU: Uses	all	available	GPUs

Hybrid: Leverages	all	multi-core	CPUs	&	GPUs

2 Intel Xeon CPUs (E5-2687) –
• 8 cores (3.10Ghz)

8 Titan Black NVIDIA GPUs –
• 2880 cores (889 Mhz), ~6GB



Experiments: Improvement
Runtime	improvement	
over	state-of-the-art

Improvement: 
significant at α = 0.01
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Experiments: Improvement
Runtime	improvement	
over	state-of-the-art

Improvement: 
significant at α = 0.01

MEAN       8x    40x    126x

GPU: Uses	a	single	multi-core	GPU
Multi-GPU: Uses	all	available	GPUs

Hybrid: Leverages	all	multi-core	CPUs	&	GPUs



Comparing ORCA-GPU methods
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Many problems with Orca-GPU:
• No “effective parallelization”, many parts dependent
• Requires synchronization throughout, locks
• No fine-grained parallelization 

• Significant improvement
over Orca-GPU (at 𝛼 =
0.01)

Orca-GPU runtime / 
runtime of proposed 
method

Im
pr

ov
em

en
t o

ve
r O

rc
a-

G
PU



Varying the edge ordering

Ordering strategy significantly impacts performance



Space-efficient & comm. avoidance

fb−Texas84 flickr as−skitter
0

50

100

150

200

250

M
em

or
y

 

 

Graph
T and S
Set of edges

fb−Texas84 flickr as−skitter
0

50

100

150

200

250

M
em

or
y

 

 

Average memory (MB) per GPU for three networks.



Applications



Ranking/spotting Large Cliques via 
Graphlets
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Ranking/spotting Large Cliques via 
Graphlets



Ranking/spotting Large Stars via 
Graphlets



Ranking/spotting Large Stars via 
Graphlets



Framework & Algorithms 
• Introduced hybrid graphlet counting approach that leverages all 

available CPUs & GPUs
• First hybrid CPU-GPU approach for graphlet counting
• On average 126x faster than current methods
- Edge-centric computations (only requires access to edge neighborhood)

• Time and space-efficient

Applications
• Visual analytics and real-time graphlet mining

Summary
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