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Graphlets

Small induced subgraphs
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Network Motifs: Simple Building Blocks of Complex Networks [Milo et. al - Science 2002]
The Structure and Function of Complex Networks [Newman — Siam Review 2003]
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Small induced subgraphs
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Graphlets

Small induced subgraphs
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Graphlets

Small induced subgraphs
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k-graphlets = family of graphlets of size k
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Network Motifs: Simple Building Blocks of Complex Networks [Milo et. al - Science 2002]
The Structure and Function of Complex Networks [Newman — Siam Review 2003]




Graphlets

Small induced subgraphs
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k-graphlets = family of graphlets of size k

motifs = frequently occurring subgraphs

Applied to food web, genetic, neural, web, and other networks
Found distinct graphlets in each case

Network Motifs: Simple Building Blocks of Complex Networks [Milo et. al - Science 2002]
The Structure and Function of Complex Networks [Newman — Siam Review 2003]




Applications of Graphlets =, #»

Biological Networks A/ﬁ:;;w/

aaaaaaaaa

- network alignment, protein function prediction

[Przulj 2007][Milenkovi¢-Przulj 2008] [Hulovatyy-Solava-Milenkovi¢ 2014 ]
[Shervashidze et al. 2009][Vishwanathan et al. 2010]

Social Networks

— Triad analysis, role discovery, community detectlon

[Granovetter 1983][Holland-Leinhardt 1976 ][Rossi-Ahmed 2015] 4
[Ahmed et al. 2015][ Xie-Kelley-Szymanski 2013]

Internet AS [Feldman et al. 2008]

Spam Detection
[Becchetti et al. 2008][Ahmed et al. 2016]

Useful for various machine learning tasks
e.g., Anomaly detection, Role Discovery, Relational Learning, Clustering etc.



Useful for a variety of ML tasks

/ * Graph-based anomaly detection

— Unusual/malicious behavior detection
— Emerging event and threat identification, ...

* Link prediction and relationship strength estimation

* Graph similarity queries
— Find similar nodes, edges, or graphs

\° Subgraph detection and matching

>

* Graph-based semi-supervised learning, classification, ...

/




Applications:
Higher-order network analysis and modeling

Higher-order network structures

* Visualization — “spotting anomalies” [Ahmed et al.
ICDM 2014]

* Finding large cliques, stars, and other larger
network structures [Ahmed et al. KAIS 2015]

* Spectral clustering [Jure et al. Science 2016]
 Role discovery [Ahmed et al. 2016] X& Caals
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How
CPU/GPUs
compare

PCIl-e
PCIl-e

CPU

Core | Core
. £
[ ] [ ]
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Node Interconnect

Large memory Memory is very limited

Few fast/powerful processing units Thousands of smaller processing units
Handles unbalanced jobs better Performs best with “balanced” workloads

Optimized for simple repetitive calculations

Optimized for general computations
P & P at a very fast rate.
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Few fast/po ocessing units

Combine advantages of both

Handles un nced” workloads

Optimized for simg £ repetitive calculations

Optimized for geMeral computations
P & P at a very fast rate.



Problem: global graphlet counting

(macro-level)

INPUT: a large graph G=(V,E), set of graphlets

PROBLEM: Find the number of embeddings
(appearances) of each graphlet H, € H in G



Problem: global graphlet counting

(macro-level)

INPUT: a large graph G=(V,E), set of graphlets

PROBLEM: Find the number of embeddings
(appearances) of each graphlet H, € H in G

Given an input graph G A
- How many triangles in G?

- How many cliques of size 4-nodes in G?

- How many cycles of size 4-nodes in G?
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Problem: global graphlet counting

(macro-level)

INPUT: a large graph G=(V,E), set of graphlets

PROBLEM: Find the number of embeddings
(appearances) of each graphlet H, € H in G

Given an input graph G A
- How many triangles in G?
- How many cliques of size 4-nodes in G?

How many cycles of size 4-nodes in G?

—> Many applications require counting all k-vertex graphlets

—> Recent research work
- Exact/approximation of global counts [Rahman et al. TKDE14][Jha et al. WWW15]
- Scalable for massive graphs (billions of nodes/edges) | [Ahmed et al. ICDM15,KAIS16]



Problem: local graphlet counting
(micro-level)

INPUT: a large graph G=(V,E), set of graphlets H

PROBLEM: Find the number of occurrences that
edgeiis contained within Hy, forallk =1, ..., |H|

input Local features
Graphlet
Decomposition

Role discovery, Relational Learning, Multi-label Classification




Current work zzy [y,

Decomposition
Sequential

* Enumerate all possible graphlets
- Exhaustive enumeration is too expensive

* Count graphlets for each node O(|V] .Ak—l)

- Expensive for large k [Shervashidze et al. - AISTAT 2009]

\ [Hoclevar et al. - Bioinfo. 13] /

- Not practical — scales only for graphs with few hundred/thousand nodes/edges
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Current work ey [

Decomposition
Sequential

* Enumerate all possible graphlets
- Exhaustive enumeration is too expensive

* Count graphlets for each node O(|V] .Ak—l)

- Expensive fOl’ large k [Shervashidze et al. - AISTAT 2009]

\ [Hocevar et al. - Bioinfo. 13] /

- Not practical — scales only for graphs with few hundred/thousand nodes/edges

Parallel
R Parallel ~

 Edge-centric graphlet counting (PGD) [Ahmed et al. ICDM 14, KAIS 15]
— Multi-core CPUs, large graphs

* Node-centric graphlet counting,
\ - Single GPU, Handles only tiny graphs (ORCA-GPU) [iilinkovic et al.] /




Our approach

Hybrid parallel graphlet counting framework that
leverages all available CPUs and GPUs

=\

Parallel Graphlet
Counting Framework

Algorithm classes

Single GPU Multi-GPU Hybrid CPU-GPU

methods methods methods




Our approach

Hybrid Parallel

, Graphlet Counting
Hybrid parallel graphlet Framework

counting framework that
leverages all available

CPUs & GPUs
Single GPU Multi-GPU Hybrid CPU-GPU
methods methods methods
Algorithm classes
Other key advantages:

* Edge-centric parallelization
— Improved load balancing & lock-free

* Global and local graphlet counts

* Connected and disconnected graphlets

* Fine-grained parallelization

* Space-efficient T={w L w,wi, i}

-~

Ty Tit1:t



Overview of our approach



Overview

Sv (Su) = nodes that form a 2-star with v (u)

Edge-centric, Parallel, Fast,
Space-efficient Framework

T = nodes completing a triangle with edge (v, u)



Our Approach -

(Edge-centric, parallel, space-efficient)

Searching Edge
Neighborhoods

For each edge
Find the triangles




Our Approach -

(Edge-centric, parallel, space-efficient)

e i

Searching Edge Count a few
Neighborhoods k-graphlets
For each edge For each edge,

Find the triangles count only:

k-cliques E
k-cycles 1:1
\tai!ed-triangles Z;




Our Approach -

(Edge-centric, parallel, space-efficient)

-

Searching Edge
Neighborhoods

For each edge
Find the triangles

\_

Count a few
k-graphlets

For each edge,
count only:

k-cliques E
k-cycles 1:1

tailed-triangles Z;

Count all other
graphlets

For each edge, use

combinatorial
relationships

to derive counts
of other graphlets
in constant time o(1)

o /




Our Approach - (Edge-centric, parallel, space-efficient)

Searching Edge
Neighborhoods

For each edge
Find the triangles

/

R,

\_

Count a few
k-graphlets

For each edge,
count only:

k-cliques X
k-cycles I:I

tailed-triangles Z)

e all counts ]

R

Count all other
graphlets

For each edge, use

combinatorial
relationships

to derive counts
of other graphlets
in constant time o(1)

o /




Key Observations

Neighborhood runtimesk(:j neighborhood runtimes (CPU)

]
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Key Observations

Neighborhood runtimes
are power-lawed

\

HOWEVER, a handful of neighborhoods
are hard and take significantly longer.
—
Lo -
S
c 0.03¢
3
o 0.025¢
2 The distribution of
= 0.02F  graphlet runtimes for
GE) 0.015} edge neighborhoods
i obey a power-law.
0.01}
0.005¢
0 2 6 10
Edges x 10"

runtimes that are approximately equal.

Most edge neighborhoods are fast with ]
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Key O b Se rvatl ons HOWEVER, a handful of neighborhoods
are hard and take significantly longer.
\ '_)
Neighborhood runtimes h‘:‘z | | |
are power-lawed 04
)
2 o003}
Q
& 0.025
o The distribution of
S 002 graphlet runtimes for
/ 0151 edge neighborhoods
QU ESTION: obey a power-law.
s 01r
What is the “best” way to
oy © ° 05'
partition neighborhoods
among CPUs and GPUs? 0 2 6 8 10
y ’ Edges x 10*
* “hardness” proxy =

\edge deg,, VOI., / Most edge neighborhoods are fast with ]

runtimes that are approximately equal.




Our approach

* Order edges by “hardness” and partition into 3 sets:
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Our approach

* Order edges by “hardness” and partition into 3 sets:

1—[cpu TLynpro ngu
' s \/ " e N\
[(ey) [ex) r(e;) D)

* Compute induced subgraphs centered at each edge
* CPU Workers: use hash table for o(1) lookups, O(N)
* GPU Workers: use binary search for o(log d) lookups

* When finished, dequeue next b edges:
* CPU: get b edges from FRONT of I1,pproc
* GPU: get b edges from BACK of IIpproc



Preprocessing steps

Three simple and efficient preprocessing steps:

1) Sort vertices from smallest to largest degree f(+) and
relabel thems.t. f(v;) < - < f(vy)




Preprocessing steps

Three simple and efficient preprocessing steps:

r

1) Sort vertices from smallest to largest degree f(+) and
relabel thems.t. f(v;) < - < f(vy)

J

r

.

2) ForeachT'(v;),Vi = 1,...,N, order the set of neighbors

r'(vy) ={...,wj, .., W, ... } from smallest to largest deg.

~

J




Preprocessing steps

Three simple and efficient preprocessing steps:

( 1) Sort vertices from smallest to largest degree f () and
relabel thems.t. f(v;) < - < f(vy) )

4 )
2) ForeachT'(v;),Vi = 1,...,N, order the set of neighbors

[(Vy) = {-) W), e, Wi, .. | from smallest to largest deg.

(3) Given edge (v, u) € E, ensure that f(v) = f(u) :

— hence, v is always the vertex with largest degree, d, > d,,
- J




Preprocessing steps

Three simple and efficient preprocessing steps:

( 1) Sort vertices from smallest to largest degree f () and
relabel thems.t. f(v;) < - < f(vy) )

4 )
2) ForeachT'(v;),Vi = 1,...,N, order the set of neighbors

[(v;) = {.., W), ..., W, ... } from smallest to largest deg. )

(3) Given edge (v, u) € E, ensure that f(v) = f(u) :

— hence, v is always the vertex with largest degree, d, 2 d,
- J

* All of these steps are not required, but significantly improve
* Each step is extremely fast and lends itself to easy parallelization



Fine Granularity & Work Stealing

For a single edge (v, u) € E,
. Computethesets T and S,
Il. Find the total 4-cliques using T
Ill. Find the total 4-cycles using S,

NOTE: (II) and (lll) are independent > parallelize

T:{wl,... 7wi7wi—|—17"' 7wt}
N, o\ ~ s/

T7.4 Ti41:¢




Unrestricted counts

|Su| =dy — |Te| —1
|Sv| =dy — |Te| —1

K er=(v,u)eE

- Ca= > Xpg3 = Y [T R
er=(v,u)€EE er=(v,u)eEE
Ca= Y So|+]Sul 3-graphlets
ex=(v,u)€EE
Cs= Y.  N—(IS|+[Sul +T]) -2

J

=
ex=(v,u)EE

Cs= > (%)

er=(,u)EE

Co= >

ex=(v,u)€EE

Cio = Z Xk,10

er=(v,u)EE

= X ()+ (%)

ex=(v,u)€EE

Crz= Y, |81
ex=(v,u)EE

[T - S| - |Sul

IT|- D. \

Cas = Z

er=(v,u)EE

014: Z M_dv_du+1
er=(v,u)EE

Cis= >, (ISo|+1Sul)- De
ex=(v,u)EE

Cie= >, (%)
ex=(v,u)EE

De =N _(ISV|+ |Su| i |TI) -2

4-graphlets /




Global counts

/X7=1/6'C7
X8208—C7

Xg = 1/2(Cy — 4Xs)
X10 =1/1-Cho

X11 = Y/3(Co — Xo)
X12 = C12 — Cho

X13 =1/3- (C13 — Xo)

Xi5 = 1/2- (C15 — 2X712)
X16 = C16 — 2X14

~

(V X3 — 1/3 . C3
77 X4 =12-Cy 3-graphlets
. X5 =05

K: " Xe=(3)— (X3+X4—I-X5)
4-graphlets

X14 = 1/2 . (014 = 6X7 — 4X8 — 2X9 — 4X10 — 2X12)

KXN:(JZ)—ZXi fori="7,...,16

/




Time Complexity

4-clique (O KAT )

4-cycle O(KASmax)

tailed-tri O(KASmax)
all  O(KA(Smax + Tmax))

K = number of edges
A = max degree

Tiax = max number of triangles incident to an edge in G

S nax = max number of 2-stars incident to an edge in G



Experiments



Connected 4-graphlet frequencies for a variety of the real-world
networks investigated from different domains.

Connected Graphlets

Network type graph E N N I:I N I_I
socfb-Texas84 70.7M 376M 1.2B 215M 664M 3.9B
Facebook networks socfb-UF 98M 433M 708M 186M 778M 874M

socfb-MIT 13.7M 88.5M 909M 50.9M 498M 3.8B
socfb-Stanford3 37.1M 226M 659M 151M 600M 1.8B
socfb-Wisc87 23M 121M 1.9B 59.3M 1.3B 3.8B
socfb-Indiana 60.2M 269M 1.6B 141M 495M 3.9B

soc-flickr 311M 1B 208M 252M 1.2B  3.7B
. l k soc-google-plus 186M  994M 204M 463M 668M 3.7B
Social networks soc-youtube 3.8M 156M 1.2B  162M 1B 2.3B

soc-livejournal 307M 1.9B 1.8B 4656M 778M  3.5B
soc-twitter 430M  2.3B 1.7B 990M 314M 1.9B
soc-orkut 280M 3.2B 953M 595M 520M 2B

H ia-enron-large 2.3M 22.56M 376M 6.8M 185M 1.4B
InteraCtlon networks ia-wiki-Talk 2.2M  32.3M 668M 33.8M 766M 1.5B

Collaboration networks ca-HepPh 150M 35.2M 462M 821k  143M  204M

Brain networks brain-mouse-retl 71.4M 303M 1.1B 47.4M 1.1B 1.1B

web-baidu-baike 27.8M 248M 476M 653M 1.3B 1.2B
web-arabic05 232M  3.4M 26.5M 79.2k 490M 27.3M

Technological/IP networks  tech-asskitter 149M 2.4B  571M 817M  808M  2.8B

C500-9 656M 909M 201M 50.2M 7.3M  22.3M
Dense hard benchmark graphs p-hat1000-1 20.3M 265M 1.3B 282M 1.2B 3B



CPU workers assigned difficult
unbalanced/skewed neighborhoods

Validating edge
partitioning

Edges partitioned by
“hardness”

GPUs assigned sparser
neighborhoods

Time (ms)

Assigns edge neighborhoods  o.
to “best” processor type

Importance of initial
ordering

2 4 6
Edge neighborhoods y 1o*

GPU workers assigned easy & balanced edge
neighborhoods (approx. equal runtimes)




Multi-GPU: Uses all available GPUs

Experiments: Improvement

GPU: Uses a single multi-core GPU

Hybrid: Leverages all multi-core CPUs & GPUs

Speedup (times faster)

MuLTI-
graph K A Agpu « GPU GPU HYBRID
socfb-Texas84 81 6312 450 0.031 4.65x 21.91x 263.26x
socfb-UF 83 8246 370 0.05 1.6x 55.65x 165.63x
socfb-MIT 72 708 266 0.7 11.98x 28.47x 106.14x
socfb-Stanford3 91 1172 365 0.05 21.07x 63x 133.15x
socfb-Wisc87 60 3484 300 0.04 17.88x 142.41x 189.08x
socfb-Indiana 76 1358 329 0.04 22.25x 96.89x 207.11x
soc-flickr 309 4369 4196 0.04 7.32x 31.85x 102.24x
soc-google-plus 135 1790 328 0.07 4.95x 11.98x 56.03x
soc-youtube 49 25409 1079 0.07 3.87x 26.82x 180.64x
soc-brightkite 52 1134 132 0.12 2.51x  8.09x 17.67x
soc-livejournal 213 2651 157 0.05 8.92x 70.01x 98.83x
soc-twitter 125 51386 13533 0.05 2.68x 21.76x 372.72x
soc-orkut 230 27466 646 0.05 6.12x 57.71x 129.26x
ia-enron-large 43 1383 243 0.176 2.94x 10.79x 28.30x
ia-wiki-Talk 58 1220 1034 0.02 23.35x 37.50x 85.46x
ca-HepPh 238 491 169 0.35 1.42x  6.62x 17.14x
brain-mouse-retl 121 744 712 0.26 3.21x  5.14x 32.71x
web-baidu-baike 78 97848 11919 0.03 4.83x 39.55x 156.45x
web-arabic05 101 1102 49 0.14 5.19x 29.51x 60.02x

Runtime improvement
over state-of-the-art

2 Intel Xeon CPUs (E5-2687) -
* 8 cores (3.10Ghz)

8 Titan Black NVIDIA GPUs -
* 2880 cores (889 Mhz), ~6GB



Multi-GPU: Uses all available GPUs
Hybrid: Leverages all multi-core CPUs & GPUs

Experiments: Improvement

GPU: Uses a single multi-core GPU

Runtime improvement

Speedup (times faster)
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socfb-UF 83 8246 370 0.05 1.6x 55.65x 165.63x
socfb-MIT 72 708 266 0.7 11.98x 28.47x 106.14x
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brain-mouse-retl 121 744 712 0.26 3.21x  5.14x 32.71x
web-baidu-baike 78 97848 11919 0.03 4.83x 39.55x 156.45x
web-arabic05 101 1102 49 0.14 5.19x 29.51x 60.02x

over state-of-the-art

Improvement:
significant at a = 0.01



Multi-GPU: Uses all available GPUs
Hybrid: Leverages all multi-core CPUs & GPUs

Experiments: Improvement

GPU: Uses a single multi-core GPU

Runtime improvement

Speedup (times faster)

MuLTI-

graph K A Agpu GPU GPU HYBRID?
socfb-Texas84 81 6312 450 0.031 4.65x 21.91x 263.26x
socfb-UF 83 8246 370 0.05 1.6x 55.65x 165.63x
socfb-MIT 72 708 266 0.7 11.98x 28.47x 106.14x
socfb-Stanford3 91 1172 365 0.05 21.07x 63x 133.15x
socfb-Wisc87 60 3484 300 0.04 17.88x 142.41x 189.08x
socfb-Indiana 76 1358 329 0.04 22.25x 96.89x 207.11x
soc-flickr 309 4369 4196 0.04 7.32x 31.85x 102.24x
soc-google-plus 135 1790 328 0.07 4.95x 11.98x 56.03x
soc-youtube 49 25409 1079 0.07 3.87x 26.82x 180.64x
soc-brightkite 52 1134 132 0.12 2.51x  8.09x 17.67x
soc-livejournal 213 2651 157 0.05 8.92x 70.01x 98.83x
soc-twitter 125 51386 13533 0.05 2.68x 21.76x 372.72x
soc-orkut 230 27466 646 0.05 6.12x 57.71x 129.26x
ia-enron-large 43 1383 243 0.176 2.94x 10.79x 28.30x
ia-wiki-Talk 58 1220 1034 0.02 23.35x 37.50x 85.46x
ca-HepPh 238 491 169 0.35 1.42x  6.62x 17.14x
brain-mouse-retl 121 744 712 0.26 3.21x  5.14x 32.71x
web-baidu-baike 78 97848 11919 0.03 4.83x 39.55x 156.45x
web-arabic05 101 1102 49 0.14 5.19x 29.51x 60.02x
MEAN 8X 40X 126X

over state-of-the-art

Improvement:
significant at a = 0.01



Comparing ORCA-GPU methods

I Orca-GPU [l Orca-GPU-S3

* Significant improvement 200

180} Orca-GPU runtime /
over Orca-GPU (at a = runtime of proposed
0.01)

160}  method

Improvement over Orca-GPU

BA ER GEO

Many problems with Orca-GPU:

* No “effective parallelization”, many parts dependent
* Requires synchronization throughout, locks

* No fine-grained parallelization



Varying the edge ordering

vol(ex) = vol(u,v) = D cr(u o) duw
DESCENDING REVERSE ORDER
graph d vol d—! vol~!

socfb-Texas84 263.3x 284.1x 23.5x% 10.8x

Ordering strategy significantly impacts performance



Space-efficient & comm. avoidance

250

I Graph
o00l M T and S
Bl Set of edges

100}

Memory

oS0

fo—Texas84 flickr as-skitter

Average memory (MB) per GPU for three networks.



Applications



Ranking/spotting Large Cliques via
Graphlets
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Ranking/spotting Large Cliques via
Graphlets




Ranking/spotting Large Cliques via
Graphlets




Ranking/spotting Large Cliques via
Graphlets
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Ranking/spotting Large Stars via
Graphlets




Ranking/spotting Large Stars via
Graphlets
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Summary

Framework & Algorithms

* Introduced hybrid graphlet counting approach that leverages all
available CPUs & GPUs

* First hybrid CPU-GPU approach for graphlet counting

* On average 126x faster than current methods
- Edge-centric computations (only requires access to edge neighborhood)

* Time and space-efficient

Applications
* Visual analytics and real-time graphlet mining
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Thanks!

Download hundreds of real-world graphs and network datasets
Interactive visualization and analysis of network datasets
Explore network datasets and visualize their structure

Network Data Repository. Exploratory Analysis & Visualization.
The first interactive data and network repository with real-time analytics. Network repository is not only the first interactive
repository, but also the largest network and graph data repository with over 500+ donations. This large comprehensive
bt 7 collection of network graph data is useful for making significant research findings as well as benchmark data sets for a
u e S t I O n S wide variety of applications and domains (e.g., network science, bioinformatics, machine learning, data mining, physics,
[ ] and social science) and includes relational, attributed, heterogeneous, streaming, spatial, and time series data as well as
non-relational machine learning data. All data sets are easily downloaded into a standard consistent format. We also have

built a multi-level interactive graph analytics engine that allows users to visualize the structure of the networks as well as
macro-level graph statistics as well as important micro-level properties of the nodes and edges.

Data: http://networkrepository.com

Research generously supported by:

NVIDIA.
Research Gift




