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Abstract—Temporal networks are ubiquitous and evolve over
time by the addition, deletion, and changing of links, nodes, and
attributes. Although many relational datasets contain temporal
information, the majority of existing techniques in relational
learning focus on static snapshots and ignore the temporal
dynamics. We propose a framework for discovering temporal
representations of relational data to increase the accuracy
of statistical relational learning algorithms. The temporal
relational representations serve as a basis for classification,
ensembles, and pattern mining in evolving domains. The
framework includes (1) selecting the time-varying relational
components (links, attributes, nodes), (2) selecting the temporal
granularity (i.e., set of timesteps), (3) predicting the temporal
influence of each time-varying relational component, and (4)
choosing the weighted relational classifier. Additionally, we
propose temporal ensemble methods that exploit the temporal-
dimension of relational data. These ensembles outperform
traditional and more sophisticated relational ensembles while
avoiding the issue of learning the most optimal representation.
Finally, the space of temporal-relational models are evaluated
using a sample of classifiers. In all cases, the proposed
temporal-relational classifiers outperform competing models
that ignore the temporal information. The results demonstrate
the capability and necessity of the temporal-relational represen-
tations for classification, ensembles, and for mining temporal
datasets.

Keywords-Time-evolving relational classification; tempo-
ral network classifiers; temporal-relational representations;
temporal-relational ensembles; statistical relational learning;
graphical models; mining temporal-relational datasets

I. INTRODUCTION

Temporal-relational information is seemingly ubiquitous;
it is present in domains such as the Internet, citation and col-
laboration networks, communication/email networks, social
networks, biological networks, among many others. These
domains all have attributes, links, and/or nodes changing
over time which are important to model. We conjecture
that discovering an accurate temporal-relational represen-
tation disambiguates the true nature and strength of links,
attributes, and nodes. However, the majority of research in
relational learning has focused on modeling static snap-
shots [1], [2], [3] and has largely ignored the utility of
learning and incorporating temporal dynamics into relational
representations.

Temporal relational data has three main components (i.e.,
attributes, nodes, links) that vary in time. First, the at-

tribute values might change over time (e.g., research area
of an author). Secondly, links might be created and deleted
throughout time (e.g., friendships or a paper citing a previous
paper). Thirdly, nodes might be activated and deactivated
throughout time (e.g., a person might not send an email
for a few days). Additionally, in a temporal prediction task,
the attribute to predict is changing throughout time (e.g.,
predicting a network anomaly) whereas in a static prediction
task the predictive attribute remains constant.

Consequently, the space of temporal relational models is
defined by considering the set of relational elements that
might change over time such as the attributes, links, and
nodes. Additionally, the space of temporal-relational repre-
sentations depends on a temporal weighting and the temporal
granularity. The temporal weighting attempts to predict the
influence of the links, attributes and nodes by decaying the
weights of each with respect to time whereas the temporal
granularity restricts links, attributes, and nodes with respect
to some window of time. The most optimal temporal-
relational representation and the corresponding temporal
classifier depends on the particular temporal dynamics of
the links, attributes, and nodes present in the data and also
on the domain and type of network (e.g., social networks,
biological networks).

In this work, we address the problem of selecting the
most optimal temporal-relational representation to increase
accuracy of predictive models. The space of temporal-
relational representations leads us to propose the (1)
temporal-relational classification framework and (2) tempo-
ral ensemble methods (e.g., temporally sampling, randomiz-
ing, and transforming features) that leverage time-varying
links, attributes, and nodes. We evaluate these temporal-
relational models on a variety of classification tasks and
evaluate each under various constraints. Finally, we explore
the utility of the framework for (3) mining temporal datasets
and discovering temporal patterns. The results demonstrate
the importance and scalability of the temporal-relational
representations for classification, ensembles, and for mining
temporal datasets.

II. RELATED WORK

Most previous work uses static snapshots or significantly
limits the amount of temporal information used for rela-
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tional learning. Sharan et. al. [4] assumes a strict temporal-
representation that uses kernel estimation for links and
includes these into a classifier. They do not consider multiple
temporal granularities (all information is used, statically)
and the attributes and nodes are not weighted. In addition,
they focus only on one specific temporal pattern and ig-
nore the rest whereas we explore many temporal-relational
representations and propose a flexible framework capable
of capturing the temporal patterns of links, attributes, and
nodes. Moreover, they only evaluate and consider static
prediction tasks. Other work has focused on discovering
temporal patterns between attributes [5]. There are also
temporal centrality measures that capture properties of the
network structure [6].

III. TEMPORAL-RELATIONAL CLASSIFICATION
FRAMEWORK

The temporal-relational classification framework is de-
fined with respect to the possible transformations of links,
attributes, or nodes (as a function of time). The temporal
weighting (e.g., exponential decay of past information) and
temporal granularity (e.g., window of timesteps) of the
links, attributes and nodes form the basis for any arbitrary
transformation with respect to the temporal information (See
Table I). The discovered temporal-relational representation
can be applied for mining temporal patterns, classification,
and as a means for constructing temporal-ensembles. An
overview of the temporal-relational representation discovery
is provided below:

1) For each RELATIONAL COMPONENT

− Links, Attributes, or Nodes
2) Select the TEMPORAL GRANULARITY

? Timestep ti
? Window {ti, ti+1..., tj}
? Union T = {t0, ..., tn}

3) Select the TEMPORAL INFLUENCE

? Weighted
? Uniform
Repeat steps 1-3 for each relational component.

4) Select the Modified RELATIONAL CLASSIFIER

? Relational Bayes Classifier (RBC)
? Relational Probability Trees (RPT)

Table I provides an intuitive view of the possible
temporal-relational representations. For instance, the recent
TVRC model is a special case of the proposed framework
where the links, attributes, and nodes are unioned and the
links are weighted.

A. Relational Components: Links, Attributes, Nodes

The data is represented as an attributed graph D =
(G,X). The graph G = (V,E) represents a set of N nodes,
such that vi ∈ V corresponds to node i and each edge

Table I
TEMPORAL-RELATIONAL REPRESENTATION.
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eij ∈ E corresponds to a link (e.g., email) between nodes i
and j. The attribute set:

X =

(
XV = [X1, X2, ..., Xmv ],
XE = [Xmv+1, Xmv+2, ..., Xmv+me ]

)
may contain observed attributes on both the nodes (XV) and
the edges (XE). Below we use Xm to refer to the generic
mth attribute on either nodes or edges.

There are three aspects of relational data that may vary
over time. First, the values of attribute Xm may vary over
time.

Second, edges may vary over time. This results in a
different data graph Gt = (V,Et) for each time step t, where
the nodes remain constant but the edge set may vary (i.e.,
Eti 6= Etj for some i, j). Third, a nodes existence may
vary over time (i.e., objects may be added or deleted). This
is also represented as a set of data graphs G′t = (Vt, Et),
but in this case both the nodes and edge sets may vary.
Let Dt = (Gt,Xt) refer to the dataset set at time t, where
Gt = (V,Et,W

E
t ) and Xt = (XV

t ,X
E
t ,W

X
t ). Here Wt

refers to a function that assigns weights on the edges and
attributes that are used in the classifiers below. We define
WE

t (i, j) = 1 if eij ∈ Et and 0 otherwise. Similarly, we
define WX

t (xmi ) = 1 if Xm
i = xmi ∈ Xm

t and 0 otherwise.

B. Temporal Granularity

Traditionally, relational classifiers have attempted to use
all the data [4]. Conversely, the appropriate temporal gran-
ularity (i.e., set of timesteps) can be learned to improve
classification accuracy. We briefly define the three general
classes evaluated in this work for varying the temporal
granularity of the links, attributes, and nodes.

1) Timestep. The timestep models only use a single
timestep ti for learning.

2) Window. The window models use a sliding window
of timesteps {ti, ti+1..., tj} for learning. The space of
window models is by far the largest.

3) Union. The union model uses all the previous temporal
information for learning.

The timestep and union models are separated into distinct
classes for clarity in evaluation and for pattern mining.



C. Temporal Influence: Links, Attributes, Nodes

The influence of the relational components over time are
predicted using temporal weighting. The temporal weights
can be viewed as probabilities that a relational component
is still active at the current time step t, given that it was
observed at time (t−k). Conversely, the temporal influence
of a relational component might be treated uniformly. Ad-
ditionally, weighting functions can be chosen for different
relational components with varying temporal granularities.
For instance, the temporal influence of the links might be
predicted using the exponential kernel while the attributes
are uniformly weighted but have a different temporal gran-
ularity than the links.

1) Weighting. We investigated three temporal weighting
functions:
• Exponential Kernel. The exponential kernel

weights the recent past highly and decays the
weight rapidly as time passes [7]. The kernel
function KE for temporal data is defined as:

KE(Di; t, θ) = (1− θ)t−iθWi

• Linear Kernel. The linear kernel decays more gen-
tly and retains the historical information longer.
The linear kernel KL for the data is defined as:

KL(Di; t, θ) = θWi(
t∗ − ti + 1

t∗ − to + 1
)

• Inverse Linear Kernel. The inverse linear kernel
KIL lies between the exponential and linear ker-
nels when moderating the contribution of histori-
cal information. The inverse linear kernel for the
data is defined as:

KIL(Di; t, θ) = θWi(
1

ti − to + 1
)

2) Uniform. The relational component(s) could be as-
signed uniform weights across time for the selected
temporal granularity (e.g., traditional classifiers assign
uniform weights, but they do not select the appropriate
temporal granularity).

D. Temporal-Relational Classification

Once the temporal granularity and the temporal weighting
are selected for each relational component, then a temporal-
relational classifier is learned. Modified versions of the
RBC [8] and the RPT [9] are applied with the temporal-
relational representation. However, any relational model that
has been modified for weights is suitable for this phase.
We extended RBCs and RPTs since they are interpretable,
diverse, simple, and efficient. We use k-fold cross-validation
to learn the “best” model. Both classifiers are extended for
learning and inference through time.

Weighted Relational Bayes Classifier. RBCs extend
naive Bayes classifiers to relational settings by treating

heterogeneous relational subgraphs as a homogenous set
of attribute multisets. For example, when modeling the
dependencies between the topic of a paper and the topics of
its references, the topics of those references form multisets
of varying size (e.g., {NN, GA}, {NN, NN, RL, NN, GA}).
The RBC models these heterogenous multisets by assuming
that each value of the multiset is independently drawn from
the same multinomial distribution. This approach is designed
to mirror the independence assumption of the naive Bayesian
classifier [10]. In addition to the conventional assumption
of attribute independence, the RBC also assumes attribute
value independence within each multiset. More formally, for
a class label C, attributes X, and related items R, the RBC
calculates the probability of C for an item i of type G(i) as
follows:

P (Ci|X, R) ∝
∏

Xm∈XG(i)

P (Xi
m|C)

∏
j∈R

∏
Xk∈XG(j)

P (Xj
k|C)P (C)

Weighted Relational Probability Trees. RPTs extend
standard probability estimation trees to a relational setting in
which data instances are heterogeneous and interdependent.
The algorithm for learning the structure and parameters of
a RPT searches over a space of relational features that use
aggregation functions (e.g. AVERAGE, MODE, COUNT)
to dynamically propositionalize relational data multisets and
create binary splits within the RPT.

Learning. The RBC uses standard maximum likelihood
learning with Laplace correction for zero-values. More

Figure 1. Temporal Link Weighting

Figure 2. Temporal Attribute Weighting

Figure 3. Graph and Attribute Weighting



(a) Links weighting (b) Link and attribute weighting

Figure 4. (a) The feature calculation that includes only the temporal link
weights. (b) The feature calculation that incorporates both the temporal
attribute weights and the temporal link weights.

specifically, the sufficient statistics for each conditional
probability distribution are computed as weighted sums of
counts based on the link and attribute weights. The RPT
uses the standard RPT learning algorithm except that the
aggregate functions are computed after the appropriate links
and attributes weights are included with respect to the
selected temporal granularity (shown in Figure 4).

Prediction. For prediction we compute the summary data
DSt

at time t − the time step for which the model is being
applied. The learned model for time (t − 1) to DSt

. The
weighted classifier is appropriately augmented to incorporate
the weights for DSt .

IV. TEMPORAL ENSEMBLE METHODS

Ensemble methods have traditionally been used to im-
prove predictions by considering a weighted vote from a set
of classifiers [11]. We propose temporal ensemble methods
that exploit the temporal dimension of relational data to
construct more accurate predictors. This is in contrast to
traditional ensembles that disregard the temporal informa-
tion. The temporal-relational classification framework and
in particular the temporal-relational representations of the
time-varying links, nodes, and attributes form the basis of
the temporal ensembles (i.e., used as a wrapper over our
framework). The proposed temporal ensemble techniques are
assigned to one of the five methodologies described below.

A. Transforming the Temporal Nodes and Links
The first temporal-ensemble method learns a set of clas-

sifiers where each of the classifiers are applied after the link
and nodes are sampled from each discrete timestep according
to some probability. This sampling strategy is performed af-
ter constructing the temporal-relational representation where
the temporal weighting and temporal granularity have been
selected. Additionally, the sampling probabilities for each
timestep can be chosen to be biased toward the present or
the past. In contrast to applying a sampling strategy across
time, we might transform the time-varying nodes and links
using the methods described in the framework.

B. Sampling or Transforming the Temporal Feature Space
The second type of temporal ensemble method transforms

the temporal feature space by localizing randomization (for

attributes at each timestep), weighting, or by varying the
temporal granularity of the features. Additionally, we might
use only one temporal weighting function but learn different
decay parameters or resample from the temporal features.
The temporal features could also be clustered (using varying
decay parameter or randomizations), similar to the dynamic
topic discovery models evaluated later in the paper.

C. Adding Noise or Randomness

A temporal ensemble based on adding noise along the
temporal dimension of the data may significantly increase
generalization and performance. Suppose, we randomly per-
mute the nodes feature values across the timesteps (i.e., a
nodes recent behavior is observed in the past and vice versa)
or links between nodes are permuted across time.

D. Transforming the Time-Varying Class Labels

These temporal ensemble methods introduce variance in
the classifiers by randomly permuting the previously learned
labels at t-1 (or more distant) with the the true labels at t.

E. Multiple Classification Algorithms and Weightings

A temporal ensemble may be constructed by randomly
selecting from a set of classification algorithms (i.e., RPT,
RBC, wvRN, RDN), while using equivalent temporal-
relational representations or by varying the representation
with respect to the temporal weighting or granularity.
Notably, an ensemble using RPT and RBC significantly
increases accuracy, most likely due to the diversity of
these temporal classifiers (i.e., correctly predicting different
instances). Additionally, the temporal-classifiers might be
assigned weights based on cross-validation (or Bayesian
approach).

V. METHODOLOGY

We describe the datasets and define a few representative
temporal-relational classifiers from the framework.

A. Datasets

For evaluating the framework, we use a range of both
static (i.e., prediction attribute is constant as a function of
time) and temporal prediction tasks (i.e., prediction attribute
changes between timesteps).

PYCOMM Developer Communication Network. We an-
alyze email and bug communication networks extracted from
the Python development environment (www.python.org).
We use the python-dev mailing list archive for the period
01/01/07−09/30/08. The sample contains 13181 email mes-
sages, among 1914 users. Bug reports were also collected
and we constructed a second bug discussion network. The
sample contained 69435 bug comments among 5108 users.
The size of the timesteps are three months.

We also extracted text from emails and bug messages and
use it to dynamically model the topics between individuals
and teams. Additionally, we discover temporal centrality



attributes (i.e., clustering coefficient, betweenness). The pre-
diction task is whether a developer is effective (i.e., if a user
closed a bug in that timestep).

Table II
GENERATED ATTRIBUTES FROM THE PYCOMM NETWORK

Python Communication Network Attributes

Conv Tool Build
Demos & tools Dist Utils
Documentation Doc Tools

Team Installation InterpCore
Membership Regular Expr Tests

Unicode Windows
Ctypes Ext Modules
Idle LibraryLib
Tkinter XML

Performance Assigned To [HAS CLOSED]

Communication Comm. Count Bug Comm.
Attributes Email Comm.

User Topics Topic Email Topic
Bug Topic

Temporal Eigenvector Cluster. Coeff.
Centrality Betweenness Degree

Edge Count Edge Topic
Link Attributes Email Count Email Topic

Bug Count Bug Topic

CORA Citation Network. The CORA database contains
authorship and citation information about CS research papers
extracted automatically from the web. The prediction tasks
are to predict one of seven machine learning papers and to
predict AI papers given the topic of its references. In addi-
tion, these techniques are evaluated using the most prevalent
topics its authors are working on through collaborations with
other authors.

B. Temporal Models
The space of temporal-relational models are evaluated

using a representative sample of classifiers with varying
temporal-relational weightings and granularities. For every
timestep t, we learn a model on Dt (i.e., some set of
timesteps) and apply the model to Dt+1. The utility of the
temporal-relational classifiers and representation are mea-
sured using the area under the ROC curve (AUC). Below, we
briefly describe a few classes of models that were evaluated.
• TENC: The TENC models predict the temporal influ-

ence of both the links and attributes.
• TVRC: This model weights only the links using all

previous timesteps.
• Union Model: The union model uses all links and

nodes up to and including t for learning.
• Window Model: The window model uses the data
Dt−1 for prediction on Dt (unless otherwise specified).

We also compare simpler models such as the RPT (re-
lational information only) and the DT (non-relational) that

TVRC
RPT
Intrinsic
Int+time
Int+graph
Int+topics
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00

Figure 5. We compare a primitive temporal model (TVRC) to competing
relational (RPT), and non-relational (DT) models. The AUC is averaged
across the timesteps.

ignore any temporal information. Additionally, we explore
many other models, including the class of window models,
various weighting functions (besides exponential kernel),
and built models that vary the set of windows in TENC
and TVRC.

VI. EXPERIMENTS

We first evaluate temporal-relational representations for
improving classification models. These models are evaluated
using different types of attributes (e.g., relational only vs.
non-relational) and also by using different types of dis-
covered attributes (e.g., temporal centrality, team attributes,
communication). The results demonstrate the utility of the
temporal-relational classifiers, their representation, and the
discovered temporal attributes. We also identify the mini-
mum temporal information (i.e., simplest model) required
to outperform classifiers that ignore the temporal dynam-
ics. Furthermore, the proposed temporal ensemble methods
(i.e., temporally sampling, randomizing, and transforming
features) are evaluated and the results demonstrate signifi-
cant improvements over traditional and relational ensemble
methods.

We then focus on models that vary the temporal-
granularity and apply these for mining temporal patterns and
more generally for discovering the nature of the time-varying
links and attributes. Finally, we apply temporal textual analy-
sis, generate topic features, and annotate the links and nodes
with their corresponding topics over time. The significance
of the evolutionary topic patterns are evaluated using a
classification task. The results indicate the effectiveness of
the temporal textual analysis for discovering time-varying
features and incorporating these patterns to increase the
accuracy of a classification task. For brevity, we omit many
plots and comparisons.
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Figure 6. Exploring the space of temporal-relational models. We evaluate
significantly different temporal-relational representations from the proposed
framework. This experiment uses the PYCOMM network, but focuses on
time-varying relational attributes.

A. Single Models

We provide examples of temporal-relational models from
the proposed framework and show that in all cases the
performance of classification improves when the temporal
dynamics are appropriately modeled.
Temporal, Relational, and Non-relational Information.
We first assess the utility of the temporal, relational, and
non-relational information. In particular, we are interested in
this information as it pertains to the construction of features
and their selection and pruning from the model. For these
experiments, we compare the most primitive models such
as TVRC (i.e., uses temporal-relational information), RPT
(i.e., only relational information), and a decision tree that
uses only non-relational information. Additionally, we learn
these models using various types of attributes and explore
the utility of each with respect to the temporal, relational or
non-relational information.

Figure 5 compares TVRC (i.e., a primitive temporal-
relational classifier) with the RPT and DT models that use
more features but ignore the temporal dynamics of the data.
We find the TVRC to be the simplest temporal-relational
classifier that still outperforms the others. Interestingly, the
discovered topic features are the only additional features that
improve performance of the DT model. This is significant
as these attributes are discovered by dynamically modeling
the topics, but are included in the DT model as simple non-
relational features (i.e., no temporal weighting or granularity,
...). We also find that in some cases the selective learner
chooses a suboptimal feature when additional features are
included in the basic DT model (see Figure 5). More sur-
prisingly, the base RPT model does not improve performance
over the DT model, indicating the significance of moderating
the relational information with the temporal dynamics.
Exploring Temporal-Relational Models. We focus on ex-

ploring a small but representative set of temporal-relational
models from the proposed framework. To more appropriately
evaluate their temporal-representations, we chose to remove
highly correlated attributes (i.e., that are not necessarily
temporal patterns, or motifs), such as assignedto in the
PYCOMM prediction task. In Figure 6, we find that TENC
outperforms the other models over all timesteps. This pro-
posed class of models is significantly more complex than
TVRC (and most other models) since the temporal influence
of both links and attributes are learned.

We then explored learning the appropriate temporal gran-
ularity but with respect to the TVRC model. Figure 6 shows
the results from two models in the TVRC class where
we attempt to tease apart the superiority of TENC (i.e.,
weighting or granularity). However, both models outperform
one another on different timesteps, indicating the necessity
for a more precise temporal-representation that optimizes
the temporal granularity by selecting the appropriate decay
parameters for links and attributes (i.e., in contrast to a
more strict representation of including the links or not).
The window and union models perform significantly worse,
but are significantly more efficient and scalable for billion
node temporal datasets while still including some temporal
information based on the granularity of the links and at-
tributes. Similar results were found using CORA and other
base classifiers such as RBC.

We have also experimented searching over many temporal
weighting functions and found the exponential decay to
be the most appropriate for both links and attributes in
the proposed prediction tasks. The most optimal temporal-
relational representation depends on the temporal dynam-
ics and nature of the network under consideration (e.g.,
social networks, biological networks, citation networks).
Nevertheless, multiple temporal weightings and granularities
are found to be useful for constructing robust temporal
ensembles that significantly reduce error and variance (i.e.,
compared to single temporal-relational classifiers and more
importantly relational and traditional ensembles).

The accuracy of classification generally increases as more
temporal information is included in the representation. How-
ever, this may lead to overfitting or other biases. On the other
hand, the more complex temporal-relational representations
aid in the mining of temporal patterns. For instance, the use
of the evolutionary topic patterns for improving classification
by moderating both the links and attributes over time (See
Section VI-D).
Selective Temporal Learning. We also explored “selective
temporal learning” that uses multiple temporal weighting
functions (i.e., and temporal granularities) for the links and
attributes. The motivation for such an approach is that the
influence of each temporal component should be modeled
independently, since any two attributes (or links) are likely
to decay at different rates. However, the complexity and
the utility of the learned temporal-relational representation



depends on the ability of the selective learner to select the
best temporal features (derived from weighting or varying
the temporal granularity of attributes and links) without over-
fitting or causing other problems. We found that the selective
temporal learning performs best for simpler prediction tasks,
however, it still frequently outperforms classifiers that ignore
the temporal information.

B. Temporal-Ensemble Models

Instead of directly learning the most optimal temporal-
relational representation to increase the accuracy of classifi-
cation, we use temporal ensembles by varying the relational
representation with respect to the temporal information.
These ensemble models reduce error due to variance and
allow us to assess which features are the most relevant
to the domain with respect to the relational or temporal
information.
Temporal, Relational, and Traditional Ensembles. We
first resampled the instances (nodes, links, features) repeat-
edly and then learn TVRC, RPT, and DT models. Across
almost all the timesteps, we find the temporal-ensemble that
uses various temporal-relational representations outperforms
the relational-ensemble and the traditional ensemble (see
Figure 7). The temporal-ensemble outperforms the others
even when a the minimum amount of temporal informa-
tion is used (e.g., time-varying links). More sophisticated
temporal-ensembles can be constructed to further increase
accuracy. For instance, we have investigated ensembles that
use significantly different temporal-relational representations
(i.e., from a wider range of model classes) and ensembles
that use various temporal weighting parameters. In all cases,
these ensembles are more robust and increase the accuracy
over more traditional ensemble techniques (and single clas-
sifiers).

Additionally, the average improvement of the temporal-
ensembles is significant at p < 0.05 with a 16% reduction
in error, justifying the proposed temporal ensemble method-
ologies. From the individual trials, it is clear that the RPT
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Figure 7. Comparing Temporal, Relational, and Traditional Ensembles
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Figure 8. Comparing the utility of the discovered attribute classes and the
influence of each with respect to the temporal, relational, and traditional
ensembles.

has a lot of variance—despite the use of ensembles, which is
aimed at reducing variance, the RPT performs significantly
better in one trial (t = 3) and worse in another (t = 1).
This provides further evidence that relational information
and the utility of such information increases significantly
when moderated by the temporal-information.
Attribute Classes: Temporal Patterns and Significance.
We again use one of the most primitive classes of temporal-
relational representations in order to tease apart (i.e., more
accurately) the most significant attribute category (commu-
nication, team, centrality, topics). These primitive temporal-
representations also help identify the minimum amount of
temporal information that we must consider to outperform
relational classifiers. This is important as the more temporal-
relational information we exploit, the more complex and
expensive it is to learn and search from this space.

In Figure 8, we find several striking temporal patterns.
First, the team attributes are localized in time and are not
changing frequently. For instance, it is unlikely that a devel-
oper changes their assigned teams and therefore modeling
the temporal dynamics only increases the accuracy by a rel-
atively small percent. However, the temporal-ensemble still
increases the accuracy over the other ensemble methods that
ignore the temporal patterns. This indicates the robustness of
the temporal-relational representations. Moreover, we also
notice that a few developers change projects frequently,
which could be responsible for the increase in accuracy when
the temporal information is leveraged. More importantly,
the other classes of attributes are evolving considerably
and this fact is captured in the significant improvement of
the temporal ensemble models. Similar performance is also
obtained by varying the temporal granularity. We provide a
few examples in the next section.
Randomization. We use randomization to identify the sig-
nificant attributes in the temporal-ensemble models. Addi-
tionally, randomization provides a means to rank the features
and identify redundandt features (i.e., two features may share
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Figure 9. Identifying and ranking of the most significant features in the ensemble models. The significant features used in the temporal ensemble are
compared to the relational and traditional ensembles. We measure the change in AUC due to the randomization of attribute values.

the same significant temporal pattern). Randomization is
performed on an attribute by randomly reordering the values,
thereby preserving the distribution of values but destroying
any association of the attribute with the class label. For
every attribute, in every time step, we randomize the given
attribute, apply the ensemble method, and measure the drop
in AUC due to that attribute. The resulting changes in AUC
are used to assess and rank the attributes in terms of their
impact on the temporal ensemble (and how it compares to
more standard relational or traditional ensembles). Figure 9.
The results are shown in Figure 9.

We find that the basic traditional ensemble relies more
heavily on assignedto (in the current time step) while the
temporal ensemble (and even less for the relational en-
semble) relies on the previous assignedto attributes. This
indicates that the relational information in the past is more
useful than the intrinsic information in the present—which
points to an interesting hypothesis that a colleagues behavior
(and iteractions) precedes their own behavior. Organizations
might use this to predict future behavior with less informa-
tion and proactively respond more quickly.

Additionally, we investigated the attribute classes of each
type of ensemble and found that topics are most useful for
the temporal ensemble. This indicates that topics are useful
as a way to understand the context and strength of interaction
among the developers, but only when the temporal dynamics
are modeled.

C. Discovering Temporal Patterns

We define three temporal mining techniques based on
the temporal framework to construct models with varying
temporal granularities. These techniques are combined with
relational classifiers or used separately to discover the tem-
poral nature and patterns of relational datasets.
Models of Temporal Granularity. If we do not consider
temporally weighting the links, nodes, and attributes then
we restrict our focus to models based strictly on varying

the temporal granularity. In this space, there are a range of
interesting models that provide insights into the temporal
patterns, structure, and nature of the dataset. We first define
three classes of models based on varying the temporal
granularity and then evaluate the utility of these models.
In addition to discovering temporal patterns, these models
are applied to measure the temporal stability and variance
of the classifiers over time.

• PAST-to-PRESENT. These models consider the linked
nodes from the distant past and successively increases
the size of the window to consider more recent links,
attributes, and nodes.

• PRESENT-to-PAST. These models initially consider
only the most recent links, nodes, and attributes and
successively increase the size of the window to consid-
ering more of the past.

• TEMPORAL POINT. These models only consider the
links, nodes, and attributes at timestep k.

Mining Temporal-Relational Patterns Intuitively, Fig-
ure 10 shows that if we consider only the past and suc-
cessively include more recent information, then the AUC
increases as a function of the more recent attributes and links
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Figure 10. A variety of temporal granularity models (uniform weighting).
Average accuracy using RPT and RBC classifiers for ML and AI prediction
tasks.



(i.e., PAST-To-PRESENT model). Conversely, if we consider
only the most recent temporal information and successively
include more of the past then the AUC initially increases to a
local maximum and then dips before increasing as additional
past information is modeled. This drop in accuracy indicates
a type of temporal-transition in the link structure and at-
tributes. However, we might also expect the values to decay
more quickly since papers published in the distant past are
generally less similar to recent papers as shown previously.
Overfitting may justify the slight improvement in AUC as
noisey past information is added. The noise reduces bias
in training and consequently increases the models ability to
generalize for predicting instances in the future. However,
this might not always be the case. We expect the noise to
be minor in this domain as papers are unlikely to cite other
papers in the past that are not related.

More interestingly, the class of TEMPORAL-POINT mod-
els allow us to more accurately determine if past actions
at some previous timestep are predictive of the future and
how these behaviors transition over time. These patterns are
shown in Figure 10.

Temporal Anomalies. The temporal granularity models
capture many temporal anomalies. One striking anomaly is
seen in Figure 10(a) where the accuracy of the TEMPORAL-
POINT model decreases significantly in 1990, but then by
1991 the accuracy has increased back to the previous level.

Temporal Stability of Relational Classifiers. We use the
temporal granularity models to compare more accurately the
stability of the modified temporal RBC and RPT classifiers
which leads us to identify a few striking differences between
the two classifiers when modelling temporal networks.

In Figure 11(b), the RBC is shown to be stable over time
whereas the variance and stability of the RPT is significantly
worse. This lead us to analyze the internals of the modified
RPT and found that for the ML prediction task, the structure
of the trees at each timestep are significantly different from
one another and consequently unstable. However, we found
the structure of the trees to more gradually evolve in the AI
prediction task, making the RPT relatively more stable over
time.

In addition, we also found the RBC to perform extremely
well even with small amounts of temporal information (low
support for any hypothesis). The RPT and RBC are shown
to have complementary advantages and disadvantages, es-
pecially for predicting temporal attributes. This provides
further justification for the proposed temporal ensemble
method that uses both RPT and RBC with each selected
temporal-relational representation.
Temporal Relational Statistics. The temporal granularity
models can be used to compute intuitive yet informative
simple measures to gain insights into the temporal nature
of a network. The GLOBAL LINK RECENCY measures the
probability of citing a paper at time t and t − 1 for
the years 1993-1998 in both AI and ML prediction tasks
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Figure 11. Average Temporal Stability of RPT and RBC for AI and ML
prediction tasks.

as shown in Figure 12(a). For instance, the link recency
measure (AI) between 1993 and 1995 is approximately 60%
indicating that out of all the cited papers the majority of
them are published in the same year t or the previous year
t− 1. Interestingly, the papers published in the most recent
years (e.g., 1998) cite fewer papers from the same year or
previous year and more papers in the past (i.e., indicating
a temporal-transition that could be due to papers becoming
more available to researchers, perhaps with digital archives
or other factors). Furthermore, the temporal relational auto-
correlation measure shows that in general the recent papers
are more influential compared to the papers in the past
(correlation plots omitted for brevity).

The temporal link probabilities for the AI and ML pre-
diction tasks are shown in Figure 12(b). For the papers in
each time period, the probability of citing a paper given the
time-lag ` is computed. Interestingly, the link probabilities
at ` = 3 for each prediction-time approximately begin
to converge. Indicating a global pattern with respect to
past links that is independent of the core-nodes initial time
period. However, the time-lag between 0 ≤ ` ≤ 3 captures
local patterns with respect to the core-nodes prediction
time. Hence, the more recent behavior of the core-nodes
is significantly different than their past behavior.
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Table III
A SET OF DISCOVERED TOPICS AND THE MOST SIGNIFICANT WORDS

TOPIC 1 TOPIC 2 TOPIC 3 TOPIC 4 TOPIC 5
dev logged gt code test

wrote patch file object lib
guido issue lt class view
import bugs line case svn
code bug os method trunk
pep problem import type rev
mail fix print list modules

release fixed call set build
tests days read objects amp
work created socket change error

people time path imple usr
make docu data functions include
pm module error argument home
ve docs open dict file

support added windows add run
module check problem def main
things doc traceback methods local
good doesnt mailto exception src
van report recent ms directory

D. Dynamic Textual Analysis: Interpreting Links and Nodes

In this task, we use only the communications to generate a
network and then automatically annotate the links and nodes
by discovering the latent topics of these communications.
There are many motivations for such an approach, however,
we are most interested in automatically learning evolu-
tionary patterns between the topics and the corresponding
developers to increase the accuracy of temporal-relational
representations and classifiers.

We first removed a standard list of stopwords and then
use a version of Latent Dirichlet Allocation (LDA [12])
to model the topics over time. We use EM to estimate
the parameters and Gibbs sampling for inference. After
extracting the latent topics, inference is used to label each
link with it’s most likely latent topic and each node with their
most frequent topic. Instead of this simple representation, we
could have used the link probability distributions over time,
but found that the potential performance gain did not justify
the significant increase in complexity.

The latent topics are modeled in three communication
networks (email, bug, and both). From these annotated
temporal networks, we investigate the effects of modeling
the latent topics of the communications and their evolution
over time. We use the discovered evolutionary patterns as
features to explore the temporal-relational representations,
classifiers, and ensembles and evaluate and compare each
of the models.

Table III lists a few topics and the most significant words
for each. We find words with both positive and negative
connotation such as ‘good’ or ‘doesnt’ (i.e., related to
sentiment analysis) and also words referring to the domain
such as ‘bugs’ or ‘exception’. Additionally, we find the top-
ics correspond to different development and social aspects.
Interestingly, the word ‘guido’ appears significant, since
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Figure 12. Evaluation of temporal-relational classifiers using only the
latent topics of the communications to predict effectiveness. LDA is
used to automatically discover the latent topics as well as annotating the
communication links and individuals with their appropriate topic in the
temporal networks.

Guido van Rossum is the author of the Python programming
language.

E. Modeling the Evolutionary Patterns of Topics

We evaluate these dynamic topic features using various
temporal-relational representations for improving classifica-
tion models. Figure 12 indicates the necessity of using a
more optimal temporal-relational representation that models
the temporal influence of links and attributes. More interest-
ingly, we see that models that consider only simple temporal-
relational representations perform significantly worse, in-
dicating that the dynamic topics are only meaningful if
appropriately modeled. Additionally, we also learned more
complex models from the class of window models to exploit
additional temporal granularities, but removed the plots for
brevity. In all the experiments, we find that the temporal-
relational representations that leverage more of the temporal
information outperform models that use only some of the
temporal information.

Evolutionary patterns between the topics, developers, and
their effectiveness are clearly present in annotated networks.
These results indicate that productive developers usually
communicate about similar topics or aspects of development.
Additionally, we find that effective communications have a
specific structure that consequently enables others to become
more effective. Moreover, these topics and the corresponding
communications over time are temporally correlated with a
developers effectiveness.

VII. CONCLUSION

We proposed a framework for temporal-relational clas-
sifiers, ensembles, and more generally, representations for



mining temporal data. We evaluate and provide insights
of each using real-world networks with different attributes
and informational constraints. The results demonstrated the
effectiveness, scalability, and flexibility of the temporal-
relational representations for classification, ensembles, and
mining temporal networks.
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