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1 Introduction

Networks are often categorized according to the underlying phenomena that they
represent, such as re-tweets, protein interactions, or web page links. It is generally
believed that networks from different categories have inherently unique network
characteristics. In this work, we find strong evidence supporting this hypothesis
by learning a classification model f : x — y that is able to accurately predict
(with 94.2% accuracy) the category of a new arbitrary unknown network G’
described only by a D-dimensional feature vector x’ where y € {1,2,..., K} is
the class label (category). The classifier f is learned using over N=500 networks
from K=8 categories (See Figure 2) which are characterized using only D=15
simple structural features (Table 1). As an aside, Graphlet features [1] and other
more discriminative features can be used to further improve the accuracy.

To the best of our knowledge, this work is the first large-scale study that
tests whether network categories are distinguishable from one another (using
both categories of real-world networks and synthetic graphs). Previous research
has focused on either (i) classification of synthetic graphs or (ii) graphs within
a particular category such as molecular graphs. Other examples include dis-
tinguishing between brain or breast cancer cells [2] or distinguishing between
different social structures [3].

A classification accuracy of 94.2% was achieved using a random forest classi-
fier with both real and synthetic networks. These results indicate that while some
of the categories researchers use to label their graphs are indeed distinct, others,
from a feature standpoint, are largely indistinguishable from one another. More-
over, from a feature standpoint, synthetic graphs are trivial to classify as they
are structurally distinct from all other graphs. Additionally, the classifiers also
highlighted networks that are outliers within their own categories, suggesting
new potential directions for understanding those networks.

2 Data

Data was originally pulled from the Network Repository [4] for all non-synthetic
graphs. This included 1241 graphs with 15 network features. The features in



the data are listed in Table 1. Of the 20 network categories included, three
were from computational and algorithmic challenges (DIMACS, DIMACS10 and
BHOSLIB) and two recorded graphs over time (Temporal Reachability, Dynamic
Networks). As all five of these categories are fundamentally different from static
one-time recorded networks from a discipline or field they were discarded as
outside the problem scope. Within the 15 remaining categories, 9 categories
had less than 20 instances and thus were also excluded as having insufficient
data for training. Finally, Cheminformatics had significantly more instances than
all other categories and therefore was downsampled to 119 networks which is
comparable to the 2" largest category. We also generated 125 graphs: 50 using
the Barabasi-Albert (BA) model and 75 using the Erdés-Rényi (ER) model. The
final classification data set has 529 graphs from 8 categories.

Number of Nodes  Avg. Degree Avg. Clustering Coefficient Assortativity
Number of Edges Min. Degree Fraction of Closed Triangles Total Triangles
Maximum K-core = Max. Degree Max. Clique (lower bound) Avg. Triangles
Chromatic Num. Density Maximum Triangles

Table 1. Features calculated by the Network Repository
3 Results

Evidence from both unsupervised and supervised machine learning (ML) algo-
rithms points to clear, distinctive structure in real-world networks from different
domains. Dimensionality reduction using t-distributed stochastic neighbor em-
bedding (t-SNE) shows clear clusters of graphs (see Figure 1. Specifically, Face-
book, Cheminformatics, Retweet, Brain, Social and Web/Technological graphs
are able to be identified both visually and using k-means clustering.

t-Distributed Stochastic Neighbor Embedding

' i ) e
. » RIugt s ¥
%
-

Fig. 1. t-SNE Clustering. Black Squares indicate centroids from K-means

Similarly, standard classification algorithms are able to accurately classify
graphs from each of those categories. A summary of the classification results
are shown in Figure 2 and supports several important findings. First, we see
that even though Erdds-Renyi (ER) and Barabasi graphs (BA) are intended
to model real-networks, they are distinct enough from their inspirations that
only two other networks are classified as either BA or ER. This result questions
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Fig. 2. Contigency Matrix for Classification from a Random Forest Model

the efficacy of testing algorithms/ideas intended for real networks on synthetic
models. Second, it is apparent that graphs normally labeled “Web” are difficult to
distinguish from social graphs. Deeper evaluation reveals that several of the web
graphs represent pages within a specific social community, which could therefore
influence the network’s structure. Likewise, several social graphs are from very
techno-centric realms and could be reasonably labeled as a web graph.

Additional tests show that two categories of graphs initially excluded due to
low instances could be combined with existing categories with a minimal loss
in accuracy. Results from k-means clustering indicate that Web and Techno-
logical graphs as well as Brain and Biological networks have similar properties.
Finally, careful analysis of the mislabeled graphs in Figure 2 provides interest-
ing network/category specific findings and suggestions. For example, 10 of the
36 brain networks are non-human, however all 5 graphs that are mislabeled are
non-human. This is strong evidence that either the human networks are truly
distinct from the non-humans, or the network discovery process is not sufficiently
standardized for neuro-networks. Also interesting was that a visual inspection
of the graph mislabeled as a retweet network shows surprising similarities. This
suggests that using classification models provide valuable insight into alternative
research techniques for crossing disciplines.

4 Conclusions

This work makes two important findings. First, real-world networks from var-
ious domains have distinct structural properties that allow us to predict with
high accuracy the category of an arbitrary network. Second, classifying synthetic
networks is trivial as our models can easily distinguish between synthetic graphs
and the real-world networks they are supposed to model.
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