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Abstract
Causal inference studies using textual social media data can
provide actionable insights on human behavior. Making accu-
rate causal inferences with text requires controlling for con-
founding which could otherwise impart bias. Recently, many
different methods for adjusting for confounders have been
proposed, and we show that these existing methods disagree
with one another on two datasets inspired by previous so-
cial media studies. Evaluating causal methods is challeng-
ing, as ground truth counterfactuals are almost never avail-
able. Presently, no empirical evaluation framework for causal
methods using text exists, and as such, practitioners must se-
lect their methods without guidance. We contribute the first
such framework, which consists of five tasks drawn from real
world studies. Our framework enables the evaluation of any
casual inference method using text. Across 648 experiments
and two datasets, we evaluate every commonly used causal
inference method and identify their strengths and weaknesses
to inform social media researchers seeking to use such meth-
ods, and guide future improvements. We make all tasks, data,
and models public to inform applications and encourage ad-
ditional research.

1 Introduction
The massive volume of social media data offers significant
potential to help researchers better understand human be-
havior by making causal inferences. Researchers often for-
malize casual inference as the estimation of the average
treatment effect (ATE) of a specific treatment variable (e.g.
therapy) on a specific outcome (e.g. suicide) (Rubin 2005;
Rosenbaum 2010; Keith, Jensen, and O’Connor 2020). A
major challenge is adjusting for confounders (e.g. comments
mentioning depression) that affect both the treatment and
outcome (depression affects both an individual’s propensity
to receive therapy and their risk of suicide) (Keith, Jensen,
and O’Connor 2020). Without adjusting for depression as a
confounder, we might look at suicide rates among therapy
patients and those not receiving therapy, and wrongly con-
clude that therapy causes suicide.

The gold standard for avoiding confounders is to assign
treatment via a randomized controlled trial (RCT). Unfortu-

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Galen Weld and Peter West contributed equally to this work.

Figure 1: Causal graph representing the the context of our
evaluation framework. All edges have known probabilities.
While our framework naturally generalizes to more complex
scenarios, we chose binary treatments (T) and outcomes (Y),
and a binary latent confounder (class), as even in this sim-
ple scenario, current methods struggle.

nately, in many domains, assigning treatments in this man-
ner is not feasible (e.g. due to ethical or practical concerns).
Instead, researchers conduct observational studies (Rosen-
baum 2010), using alternate methods to adjust for con-
founders.

Text (e.g. users’ social media histories) can be used to ad-
just for confounding by training an NLP model to recognize
confounders (or proxies for confounders) in the text, so that
similar treated and untreated observations can be compared.
However, a recent review (Keith, Jensen, and O’Connor
2020) finds that evaluating the performance of such meth-
ods is “a difficult and open research question” as true ATEs
are almost never known, and so, unlike in other NLP tasks,
we cannot know the correct answer. We find that this chal-
lenge is amplified, as methods disagree with one another on
real world tasks (§3) – how do we know which is correct?

Theoretical bounds on the performance of methods are
almost never tight enough to be informative. We derive
such bounds for the methods included here (Appendix A1)
and find that our empirical evaluation framework produces
tighter bounds more than 99% of the time. As ground truth
is almost never available, the only2 practical method to eval-
uate causal inference methods is with semi-synthetic data,
where synthetic treatments and/or outcomes are assigned to

1Link to Extended Paper with Appendix
2With the extremely rare exception of constructed observa-

tional studies, conducted with a parallel RCT.
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real observations, as in Fig. 1 (Dorie et al. 2019; Jensen
2019; Gentzel, Garant, and Jensen 2019). While widely-
used semi-synthetic benchmarks have produced positive re-
sults in the medical domain (Dorie et al. 2019), no such
benchmark exists for causal inference methods using text
(Keith, Jensen, and O’Connor 2020).

In this work, we contribute the first evaluation framework
for causal inference with text (§5). Our framework is simple,
principled, and can be applied to any method that produces
an ATE estimate given observed treatment assignments,
outcomes, and text covariates. It includes a broad range of
tasks challenging enough to identify where current methods
fail and the most promising avenues for improvement. How-
ever, no single benchmark can adequately evaluate methods
for every application. As such, our framework can be easily
extended to include additional tasks relevant to any applica-
tion and potential confounder (§5.3).

Inspired by challenges from a wide range of studies (Jo-
hansson, Shalit, and Sontag 2016; De Choudhury et al.
2016; Choudhury and Kiciman 2017; Falavarjani et al. 2017;
Olteanu, Varol, and Kiciman 2017; Kiciman, Counts, and
Gasser 2018; Sridhar et al. 2018; Saha et al. 2019; Veitch,
Sridhar, and Blei 2019; Roberts, Stewart, and Nielsen 2020),
our framework consists of five tasks (§5.2): Linguistic Com-
plexity, Signal Intensity, Strength of Selection Effect, Sam-
ple Size, and Placebo Test. Each semi-synthetic task is gen-
erated from public social media users’ profiles, perturbed
with synthetic posts to create increasing levels of difficulty.
To increase the robustness of our approach, we evaluate
methods on these tasks using real data from both Reddit
and Twitter. Not all of these tasks are exclusive to causal
inference with text, yet all are important to a great deal of
textual causal inference studies. As such, their evaluation in
this context is important. Using these tasks, we evaluate the
specific strengths and weakness of 9 widely-used methods
and 3 common estimators, conducting 648 experiments.

Concerningly, we find that almost every method predicts
a false significant treatment effect when none is present,
which could be greatly misleading to unwary practition-
ers (§7). While we find that each method struggles with at
least one challenge, methods leveraging recent, hierarchi-
cal, transformer-based architectures perform best, although
such methods are not yet widely used (Keith, Jensen, and
O’Connor 2020). These limitations and findings highlight
the importance of continued research on the evaluation of
causal inference methods for text.

The ICWSM community consists of researchers who
work both on the development of casual inference meth-
ods, and practitioners who solve real world problems using
causal inference.
For methods developers: We make our framework publicly
available3 to enable the evaluation of any causal inference
method which uses text, and encourage the development of
more robust methods. Our framework can be easily extended
to include additional tasks.
For practitioners: We identify strengths and weaknesses of
commonly used methods, identifying those best suited for

3https://behavioral-data.github.io/CausalInferenceChallenges/

specific applications, and make these publicly available3.

2 Background and Related Work
Causal Inference with Social Media Data We formalize
causal inference using notation from Pearl (1995). Given a
series of n observations (in our context, a social media user),
each observation is a tuple Oi = (Yi, Ti,Xi), where Yi is
the outcome (e.g. did user i develop a suicidal ideation?), Ti

is the treatment (e.g. did user i receive therapy?), and Xi is
the vector of observed covariates (e.g. user i’s textual social
media history).

The Fundamental Problem of Causal Inference is that
each user is either treated or untreated, and so we can
never observe both outcomes. Thus, we cannot compute the
ATE = 1

n

∑n
i=1 Yi [Ti = 1]−Yi [Ti = 0] directly, and must

estimate it by finding comparable treated and untreated ob-
servations. To do so, it is common practice to use a model
to estimate the propensity score, p̂(Xi) ≈ p(Ti = 1|Xi),
for each observation i. As treatments are typically known,
propensity score models are effectively supervised clas-
sifiers, predicting Ti, given Xi. Matching, stratifying, or
weighting using these propensity scores will produce an
unbiased ATE estimate if four assumptions hold: all con-
founders must be observed, outcomes for each user must
not be affected by treatment assignments to other users
(SUTVA), propensity scores must be accurate, and there
must be overlap in the distribution of covariates in the treated
and untreated groups (common support assumption) (Rosen-
baum 2010; Hill and Su 2013). In practice, verifying these
assumptions is difficult. In particular, ensuring that all con-
founding factors are observed is practically impossible in
real world applications, hence the need for empirical eval-
uation.

Causal Inference and NLP Until recently, there has been
little engagement between causal inference researchers and
the NLP research community (Keith, Jensen, and O’Connor
2020). There are many ways to consider text in a causal
context, such as text as a mediator (Veitch, Sridhar, and
Blei 2019; Landeiro and Culotta 2016), text as treatment
(Wood-Doughty, Shpitser, and Dredze 2018; Egami et al.
2018; Fong and Grimmer 2016; Tan, Lee, and Pang 2014;
Zhang, Mullainathan, and Danescu-Niculescu-Mizil 2020),
text as outcome (Egami et al. 2018; Zhang et al. 2018), and
causal discovery from text (Mani and Cooper 2000; Mirza
and Tonelli 2016). However, we narrow our focus to text as
a confounder. This is an important area of research because
the challenge of adjusting for confounding underlies most
causal contexts, such as text as treatment or outcome (Keith,
Jensen, and O’Connor 2020). Effective adjusting for con-
founding with text enables causal inference in any situation
where observations can be represented with text – e.g. social
media, news articles, and dialogue.

Adjusting for Confounding with Text A recent re-
view (Keith, Jensen, and O’Connor 2020, Table 1) summa-
rizes common practices across a diverse range of studies.
Almost every method used in practice consists of two parts:
a propensity score model, which uses some text represen-
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Figure 2: Treatment accuracy and ATE for both real world experiments, with bootstrapped 95% confidence intervals. Note that
for the Gender Experiment, the models with the highest accuracy have the lowest ATE.

tation to estimate propensity scores, and an ATE estima-
tor. Since such propensity-score based methods are by far
the most widely used, in this work, we focus on these meth-
ods. While we do not evaluate non-propensity score methods
such as doubly-robust methods (Kang and Schafer 2007),
TMLE (Schuler and Rose 2017), and matching on values
other than propensity scores (Roberts, Stewart, and Nielsen
2020; Mozer et al. 2020), our framework’s structure enables
evaluation of any ATE estimation method that produces an
ATE estimate given observed treatment assignments, out-
comes, and text covariates. We believe disentangling the
challenges of widely-used methods is a key contribution be-
fore moving to more complex and less common methods.
Evaluating these other methods is an important area of fu-
ture work.

Text representations used in propensity score models gen-
erally do not yet leverage recent breakthroughs in NLP,
and roughly fall into three groups: those using uni- and bi-
gram representations (De Choudhury et al. 2016; Johansson,
Shalit, and Sontag 2016; Olteanu, Varol, and Kiciman 2017),
those using LDA or topic modeling (Falavarjani et al. 2017;
Roberts, Stewart, and Nielsen 2020; Sridhar et al. 2018),
and those using neural word embeddings such as GLoVe
(Pham and Shen 2017), fastText (Joulin et al. 2017; Chen,
Montano-Campos, and Zadrozny 2020), or BERT (Veitch,
Sridhar, and Blei 2019), (Pryzant et al. 2018). Three classes
of estimators are commonly used to compute the ATE: in-
verse probability of treatment weighting (IPTW), propen-
sity score stratification, and matching, either using propen-
sity scores or, less frequently, some other distance metric.
In our evaluation, we separate the propensity score models
from the ATE estimators to better understand each compo-
nent’s individual impact.

Evaluation of Causal Inference In rare specialized cases,
researchers can use the unbiased outcomes of a parallel RCT
to evaluate those of an observational study, as in Eckles and
Bakshy (2017). This practice is known as a constructed ob-
servational study, and, while useful, is only possible where
parallel RCTs can be conducted. Outside these limited cases,
proposed models are typically evaluated on synthetic data
generated by their authors. These synthetic datasets often fa-
vor the proposed model, and do not reflect the challenges
faced by real applications (Keith, Jensen, and O’Connor
2020).

Theoretical evaluation of causal inference methods is

generally unhelpful, as theoretically derived performance
bounds are mostly much less informative than those derived
empirically (Arbour and Dimmery 2019). In this work, we
compute the theoretical bounds and find that they are so
loose as to not effectively guide practitioners in selecting
methods. Our empirical evaluation framework based on re-
alistic tasks produces tighter bounds in more than 99% of
cases (Appendix A).

Outside of the text domain, widely used empirical evalu-
ation datasets have been successful, most notably the 2016
Atlantic Causal Inference Competition (Dorie et al. 2019),
and a strong case has been made for the empirical eval-
uation of causal inference models (Gentzel, Garant, and
Jensen 2019; Jensen 2019; Lin et al. 2019). In the text do-
main, matching approaches have been evaluated empirically
(Mozer et al. 2020), but this approach evaluates only the
quality of matches, not the causal effect estimates. In con-
trast, our work applies to all estimators, not just matching,
and evaluates the entire causal inference pipeline.

3 Current Models Disagree
Recent causal inference papers (Veitch, Sridhar, and Blei
2019; Roberts, Stewart, and Nielsen 2020; De Choudhury
et al. 2016; Chandrasekharan et al. 2017; Bhattacharya and
Mehrotra 2016) have used social media histories to ad-
just for confounding. Each of these papers uses a differ-
ent propensity score model: BERT in Veitch, Sridhar, and
Blei (2019), topic modeling in Roberts, Stewart, and Nielsen
(2020), logistic regression in De Choudhury et al. (2016),
Mahalanobis distance matching in Chandrasekharan et al.
(2017), and Granger Causality in Bhattacharya and Mehro-
tra (2016). For all of these studies, ground truth causal ef-
fects are unavailable, and so we cannot tell if the chosen
model was correct. However, we can compute the accuracy
of their propensity scores (accuracy of a binary classifier
predicting treatment assignment), and see if their ATE es-
timates agree—if they don’t, then at most one disagreeing
model can be correct.

Methods We conducted two experiments using real world
data from Reddit, inspired by these recent papers. In the
Moderation Experiment, we test if having a post removed
by a moderator impacts the amount a user later posts to the
same community again. In the Gender Experiment, we use
data from Veitch, Sridhar, and Blei (2019) to study the im-
pact of the author’s gender on the score of their posts. For
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details on data collection, see Appendix B.

Results Comparing the performance of nine different
methods (Fig. 2), we find that all models have similar treat-
ment accuracy in the Moderation Experiment. However, the
models using 1,2-gram features perform better in the Gender
Experiment than the LDA and SHERBERT models. Most
importantly, we see that while many confidence intervals4

overlap, there are notable differences between ATE esti-
mates for different models, even when treatment accuracy is
nearly identical (Fig. 2a,b). That some ATE estimates’ con-
fidence intervals overlap 0 while others do not (Fig. 2b) indi-
cates that some models find nonzero treatment effects at the
common p = 0.05 threshold while others do not. Lastly, we
note that models with the highest treatment accuracy tend to
have the lowest ATE estimates (Fig. 2c,d).

Implications This should come as a great concern to the
computational social science research community. We do
not know which model may be correct, and we do not know
whether there may be a more accurate model that would
even further decrease the estimated treatment effect. We de-
rive theoretical bounds and compute them (Appendix A),
finding that in 99+% of cases, these bounds are looser than
those computed empirically using our framework, making
them less useful for model selection. This concern under-
lines the importance and urgency of empirical evaluation for
causal inference with text, and motivates our contribution.
Next, we describe key challenges in adjusting for confound-
ing with text and present a principled evaluation framework
that highlights these challenges and generates actionable in-
sights for future research.

4 Challenges for Causal Inference with Text
Using the common setting of real social media histo-
ries (De Choudhury et al. 2016; Olteanu, Varol, and Kici-
man 2017; Veitch, Sridhar, and Blei 2019; Choudhury and
Kiciman 2017; Falavarjani et al. 2017; Kiciman, Counts, and
Gasser 2018; Saha et al. 2019; Roberts, Stewart, and Nielsen
2020), we identify five challenges consistently present when
representing natural language for causal inference:

1. Linguistic Complexity: Natural language uses a diverse
set of tokens to express related underlying meaning.
Someone who struggles with mental health might write “I
feel depressed” or “I am isolated from my peers,” which
have distinct tokens but both may be indicative of depres-
sion. Can models recognize a range of expressions which
are correlated with treatment?

2. Signal Intensity: Some users only have a few posts that
contain a specific signal (such as poor mental health)
whereas others may have many posts with this signal. Sig-
nals are especially weak when posts containing the signal
constitute only a small fraction of a user’s posts. Can mod-
els detect weak signals?

4In these experiments, as well as all following experiments, re-
sults are reported with bootstrapped 95% confidence intervals com-
puted by resampling from the population and recomputing the es-
timators (§6.2) and evaluation metrics.

3. Strength of Selection Effect: Many studies have few
comparable treated and untreated users (Li, Thomas, and
Li 2018; Crump et al. 2009). Can models adjust for strong
selection effects?

4. Sample Size: Observational studies often face data col-
lection limitations.5 Can models perform well with limited
data samples?

5. Placebo Test: Oftentimes, no causal effect is present be-
tween a given treatment and an outcome. Do models
falsely predict causality when none is present?
While natural language is far more complex than any fi-

nite set of challenges can capture, the five we have cho-
sen to highlight are challenges that regularly need to be ad-
dressed in many causal inference applications that use nat-
ural language. This set of challenges was developed by re-
viewing a broad set of existing studies (Johansson, Shalit,
and Sontag 2016; De Choudhury et al. 2016; Choudhury and
Kiciman 2017; Falavarjani et al. 2017; Olteanu, Varol, and
Kiciman 2017; Kiciman, Counts, and Gasser 2018; Sridhar
et al. 2018; Saha et al. 2019; Veitch, Sridhar, and Blei 2019;
Roberts, Stewart, and Nielsen 2020) and identifying com-
monalities. While the strength of selection effect, sample
size, and placebo test challenges are not exclusive to causal
inference with text, these challenges are present in most real
world studies, and as such, a holistic evaluation framework
must consider them. These five challenges also cover three
key concepts of model performance: generalizability (lin-
guistic complexity), sensitivity (signal intensity, strength of
selection effect), and feasibility (sample size, placebo test)
that are critical for comprehensive evaluation. To produce
our evaluation framework, we derive a concrete task from
each challenge.

5 Framework for Evaluation
We generate five tasks, each with discrete levels of diffi-
culty, and corresponding semi-synthetic task datasets based
on real social media histories. Without the semi-synthetic
component, it would not be possible to empirically evaluate
a model, as we would not know the true ATE or propensity
scores. By basing our user histories on real data, we are able
to include much of the realism of unstructured text found ‘in
the wild.’ This semi-synthetic approach to evaluation pre-
serves the best of both worlds: the empiricism of synthetic
data with the realism of natural data (Jensen 2019; Gentzel,
Garant, and Jensen 2019; Jensen 2019).

5.1 Semi-Synthetic Dataset Generation
While the method for generating a semi-synthetic dataset
can be arbitrarily complex, we seek the simplest approach
which is able to identify and explain where existing meth-
ods fail. We generate our datasets according to a simpli-
fied model of the universe; where all confounding is present
in the text, and where there are only two types of people,
class 1 and class 2 (Fig. 1). In the context of men-
tal health, for example, these two classes could simply be
people who struggle with depression (class 1), and those

5In Keith, Jensen, and O’Connor (2020, Table 1), 8/12 studies
had fewer than 5,000 observations, and 4/12 had fewer than 1,000.
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Figure 3: Users are first randomly divided into two latent
(unobserved) classes with a 50/50 split, and their text histo-
ries have synthetic posts inserted specific to each task. Ob-
served binary treatments and outcomes are assigned with
conditional probabilities such that Class 1 has a true
ATE of .8, and Class 2 has a true ATE of 0. Since the
classes are balanced, the overall true ATE is .4.

who don’t (class 2). If models struggle on even this sim-
ple two-class universe, as we find, then it is highly unlikely
they will perform better in the more complex real world. In
this universe, the user’s (latent) class determines the prob-
ability of treatment and outcome conditioned on treatment.
Dependent on class, but independent of treatment and out-
come is the user’s comment history, which contains both
synthetic and real posts that are input to the model to pro-
duce propensity scores. As such, the comment history is an
observed proxy for the class confounder.

We produce each dataset using a generative process, as
shown in Fig. 3. For each task, we start with the same collec-
tion of real world user histories from public Reddit or Twit-
ter profiles. We randomly assign an equal number of users to
class 1 and class 2. Into each profile, we insert syn-
thetic posts using a function fn for class n specific to
each task, described in §5.2. We assign binary treatments
(conditioned on class) and binary outcomes (conditioned on
class and treatment) according to a known probability distri-
bution (Fig. 3). These outcomes and treatments could repre-
sent anything of interest, and they need not be binary.

To estimate the ATE, there must be overlap between the
treated and untreated groups (common support), so we can-
not make all users in class 1 treated and all users in
class 2 untreated. Instead, users in class 1 are pre-
dominantly but not always assigned to treatment (with a .9/.1
split), and users in class 2 are predominantly but not al-
ways assigned to control (also with a .9/.1 split), in order
to ensure overlap of covariates between the treated and con-
trol groups. This overlap provides common support, and thus
our observations do not necessitate trimming (Crump et al.
2009; Lee, Lessler, and Stuart 2011; Yang and Ding 2018).

Once a treatment has been assigned according to the class’
probabilities, a positive outcome is assigned with probabil-
ity .9 (treated) and .1 (untreated) for class 1, and .9 re-
gardless of treatment for class 2. Thus, class 1 has a
true ATE of .8, and class 2 has a true ATE of 0. Since
the the two classes are balanced, the overall true ATE is .4.
The objective for propensity score models is to recover the
treatment probabilities for each class, which are then used to
estimate the true ATE.

Real World User Histories In order to maximize gener-
alizability, we experiment with both Reddit and Twitter user
histories as the real world component of our semi-synthetic
datasets. Reddit and Twitter are natural data sources as they
are both publicly accessible, and widely used for relevant re-
search (Medvedev, Lambiotte, and Delvenne 2019; Yu and
Muñoz-Justicia 2020).

We downloaded all Reddit comments for the 2014 and
2015 calendar years from the Pushshift archives (Baum-
gartner et al. 2020) and grouped comments by user. After
filtering out users with fewer than 10 comments, we ran-
domly sampled 8,000 users and truncated users’ histories to
a maximum length of 60 posts for computational practical-
ity.6 These users were randomly partitioned into three sets:
a 3,200 user training set, an 800 user validation set, and a
4,000 user test set used to compute Treatment Accuracy and
ATE Bias.

To gather Twitter data, we used a similar method as that
used for Reddit. We used the Streaming API to produce
a random sample of all public tweets posted in December
2020, then randomly sampled users from this sample and
used the Twitter API to gather their complete Tweet his-
tories. As with Reddit histories, we filtered out users with
fewer than 10 Tweets, and truncated the histories of users
with more than 60 Tweets, then randomly partitioned the re-
sulting users into a training set, a validation set, and a test
set, each of the same size as their Reddit data counterparts.7

Synthetic Posts When generating semi-synthetic tasks,
we insert three types of synthetic posts, representative of
major life events that could impact mental health, into real
users’ Reddit and Twitter histories. Examples are given here,
and are listed completely in Appendix C:

• Sickness Posts describe being ill (e.g. ‘The doctor told
me I have AIDS’, ‘How do I tell my parents I have
leukemia?’). We vary both the illness, as well as way the
it is expressed.

• Social Isolation Posts indicate a sense of isolation or ex-
clusion. (‘I feel so alone, my last friend said they needed
to stop seeing me.’, ‘My wife just left me.’)

• Death Posts describe the death of companion (e.g. ‘I just
found out my Mom died’, ‘I am in shock. My son is
gone.’). We vary the phrasing as well as the companion.

While these synthetic posts are drawn from the mental health
domain, which is commonly represented among previous
studies (De Choudhury et al. 2016; Choudhury and Kiciman
2017; Saha et al. 2019), the applicability of our framework is
not limited to this specific context. These synthetic posts test
a model’s ability to recognize different tokens, and the spe-
cific tokens used are less critical. Furthermore, the concrete
choice of mental health language has the benefit of making
the user histories human-readable. Our framework can be

6The resulting set of Reddit users had a mean of 41.07 posts per
user, mean of 37.37 tokens per post, and a mean of 1523.28 tokens
per user.

7The resulting set of Twitter users had a mean of 57.76 posts
per user, mean of 19.90 tokens per post, and a mean of 1149.59
tokens per user.
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easily extended by modifying the synthetic posts to include
tokens from different domains (§5.3).

5.2 Tasks
We consider five tasks focused around the previously de-
scribed common challenges for text-based causal inference
methods.

Linguistic Complexity This task tests a model’s ability
to recognize a diverse set of tokens as being correlated with
treatment. We increase the difficulty in four steps by increas-
ing the diversity of synthetic sentences inserted into user his-
tories assigned to class 1 (i.e. the linguistic complexity
of the dataset): f1 initially appends the same Sickness Post
to the end of each class 1 user’s history; At the second
level of difficulty, f1 selects a Sickness Post uniformly at
random; At the third level, f1 selects either a Sickness or
Social Isolation Post; and at the fourth level, f1 selects a
Sickness, Social Isolation, or Death Post. For each level of
difficulty, f2 is the identity function, i.e. user histories as-
signed to class 2 are unchanged.

Signal Intensity This task tests a model’s ability to distin-
guish between the number of similar posts in a history. There
are two levels of difficulty. At the easier level, f1 appends 10
randomly sampled (with replacement) Sickness Posts, while
f2 is the identity function. At the harder level, f1 appends
only three Sickness Posts, while f2 appends one.

Strength of Selection Effect In this and the following
tasks, we do not vary f1 or f2. For Strength of Selection Ef-
fect, we make causal inference more challenging by increas-
ing the strength of the selection effect, decreasing the over-
lap between treated and untreated users. We test two levels
of difficulty: a weaker selection effect (easier) with the same
.9/.1 split to assign the majority of class 1 to the treated
group and class 2 to the control group. For the stronger
selection effect (harder), we modify the generation frame-
work to increase this split for class 1 to .95/.05. For both
the weak and strong selection effects, we use f1 to append
a single random Sickness Post and f2 as the identity func-
tion. Outcome probabilities, conditioned on treatment, are
identical to previous tasks.

Sample Size In this task, we test how the models’ perfor-
mance drops off as the amount of available training data is
reduced.8 As before, we use f1 to append a single random
Sickness Post and f2 as the identity function. For the easiest
case, we train on all 3,200 users’ histories in the training set.
We then create smaller training sets by randomly sampling
subsets with 1,600 and 800 users.

Placebo Test The final task assesses a model’s tendency
to predict a treatment effect when none is present. To do so,
we must have asymmetric treatment probabilities between
class 1 and class 2. Without this asymmetry, the un-
adjusted estimate would be equal to the true ATE of zero.
We use the same asymmetric class 1 treatment split as in
the Strength of Selection Effect task.

8In Keith, Jensen, and O’Connor (2020, Table 1), 8/12 studies
had fewer than 5,000 observations, and 4/12 had fewer than 1,000.

We set P (Y = 1|T = 0,class=1) = .05, P (Y =
1|T = 1,class=2) = .95, and the opposite for Y = 0.
This gives a treatment effect of +.9 to class 1 and a treat-
ment effect of -.9 to class 2, making the true ATE for
the entire task equal 0. As in previous tasks, f1 appends one
random Sickness Post and f2 is the identity function.

A potential limitation of these tasks may be the placement
of synthetic posts at the end of histories, or differences in the
length of histories. However in §7.1 we show that our results
suggest that these potential limitations are very unlikely to
affect the validity of evaluation. Futhermore, the framework
may be extended (§5.3) to further evaluate methods on these
aspects.

5.3 Generalizability of Evaluation Framework
A key tenet of our evaluation framework is its extensibility.
Here, we provide a summary of how the framework can be
extended, with step by step instructions for addition of con-
tinuous outcome values and new tasks. Additional details
and resources are available on our website.9

Non-binary Treatments and Outcomes The evaluation
framework presented here tests methods’ ability to han-
dle five distinct challenges which are relevant to many real
world studies. It can be applied to any causal inference
method which uses text to adjust for confounding. As our
framework is the first such framework, we focus on the sim-
plest and most broadly applicable cases: binary treatments
and outcomes, as these are the most commonly used in prac-
tice. Out of 14 recent casual inference studies, 13 used bi-
nary treatments (Keith, Jensen, and O’Connor 2020). While
the methods evaluated here have been generalized to handle
observations with continuous treatment values (i.e., dose-
response observations) (Hirano and Imbens 2004), these
methods are rarely used in practice—we are not aware of
a single such application which uses text data. However,
our framework trivially generalizes to cases with continu-
ous outcome values, and can be easily modified to include
continuous treatments and multiple confounders, including
unobserved confounders.

To modify the framework to use continuous outcomes:

1. Select a random distribution to use to assign outcome val-
ues, conditioned on treatment. A straightforward option
would be to use normal distributions with σ2 = 0.3 and
mean = .1 for (class 1, T = 0) and mean = .9 for
(class 1, T = 1), (class 2, T = 0), and (class
2, T = 1). Any distribution may be used that provides
reasonable common support as well as sufficient confu-
sion and selection effects.

2. Train propensity score models as with binary outcomes.

3. Compute ATE estimates using IPTW, matching or strati-
fication estimators, all of which can be applied to contin-
uous outcomes without modification.

4. Compute bias by taking the difference from the true ATE,
which can be derived from the known treatment and out-
come probability distributions.

9https://behavioral-data.github.io/CausalInferenceChallenges/
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Steps 2-4 are identical to the existing framework, as previ-
ously described.

Types of Confounding It is difficult or impossible to
know exactly what types of confounders threaten the accu-
racy of real world causal inferences, and even simply mak-
ing a reasonable guess requires substantial domain exper-
tise (Rosenbaum 2010). As such, our evaluation framework
simulates confounders which are common to many topics
of interest to the ICWSM community, where specific ‘indi-
cator’ passages or posts in a longer text document are cor-
related with a treatment and/or outcome of interest. These
‘indicator’ confounders have been shown to be common in
the mental health (Choudhury and De 2014), personal iden-
tity (Haimson 2018), and fake news (Talwar et al. 2019) do-
mains. While our five tasks focus on these common types of
confounder, tasks can be easily added to cover other types
of confounders, for example by adding a task which applies
some rewriting transformation (e.g. desirability (Wang and
Culotta 2019; Pryzant et al. 2018) or gender (Wang and Cu-
lotta 2019)) to the histories of class 1 and/or class 2.

To add an additional task which applies a rewriting trans-
formation:

1. Write a new f1 function which, for example, replaces all
occurrences of the token ‘happy’ with ‘sad.’

2. Write a new f2 function which, for example, replaces all
occurrences of the token ‘sad’ with ‘happy.’

3. Use the same treatment and outcome probabilities as used
for other tasks, or, optionally, modify these probabilities
to decrease or increase the overlap between the treated
and untreated groups, as in the Strength of Selection Ef-
fect task.

4. Train and evaluate methods’ treatment accuracy and bias
of the ATE using the known true ATE.

6 Causal Inference Pipeline
So many methods for adjusting for confounding with text
have been proposed recently that is not possible to evalu-
ate every one in a single paper. Instead, we focus on the
most commonly used methods, those which are based upon
propensity scores. A recent review found that propensity
score-based methods are used in 12/13 recent studies (Keith,
Jensen, and O’Connor 2020, Table 1). Evaluating less com-
monly used methods (such as doubly robust methods (Mayer
et al. 2019)) is an important area of future work, and our
evaluation framework can be applied to any method for ad-
justing for confounding with text. The methods we evaluate
here consist of three parts: a text representation, a propensity
score model, and an ATE estimator.

6.1 Text Representations & Propensity Score
Models

The Oracle uses the true propensity scores, which are
known in our semi-synthetic evaluation framework (Fig. 3).
The Oracle provides an upper-bound on model performance,
only differing from the theoretical optimum due to finite
sample effects.

We include an Unadjusted Estimator, which uses the
naive method of not adjusting for selection effects, produc-
ing an estimated treatment effect of ȲT=1 − ȲT=0, and as
such is a lower-bound for models that attempt to correct for
selection effects.

We train a Simple Neural Net (with one fully connected
hidden layer) in four variants with different text represen-
tations: 1-grams with a binary encoding, 1,2-grams with a
binary encoding, 1,2-grams with counts, and Latent Dirich-
let Allocation (LDA) features (Blei, Ng, and Jordan 2003)
based on 1,2-grams, counted. We also train Logistic Regres-
sion models on the same four text representations. Vocabu-
lary sizes for n-gram methods are included in Appendix D.

Finally, we propose and evaluate a novel cauSal HiERar-
chical variant of BERT, which we call SHERBERT. SHER-
BERT expands upon Causal BERT proposed by Veitch,
Sridhar, and Blei (2019), which is too computationally in-
tensive to scale to user histories containing more than 250
tokens, let alone ones orders of magnitude longer, such as
in our tasks. In SHERBERT, we use one pretrained BERT
model per post to produce a post-embedding (Appendix E.1
Fig. 5), followed by two hierarchical attention layers to pro-
duce a single embedding for the entire history, with a final
linear layer to estimate the propensity score. This architec-
ture is similar to HIBERT (Zhang, Wei, and Zhou 2019),
but is faster to train on long textual histories, as SHER-
BERT fixes the pretrained BERT components. More details
on SHERBERT are given in Appendix E.

6.2 Average Treatment Effect Estimators
We consider three commonly used ATE estimators – IPTW,
stratification, and matching. All three estimators use propen-
sity scores but differ in how they weight or group relevant
samples.

Inverse Propensity of Treatment Weighting estimates
the ATE by weighting each user by their relevance to selec-
tion effects:

ÂTEIPTW =

n∑
i=1

(2 ∗ Ti − 1) ∗ Yi

p̂Ti
(Xi) ∗

[∑n
j=1

1
p̂Tj

(Xj)

]
where Ti, Yi, and Xi are treatment, outcome, and features
for sample i, and p̂T (X) is the estimated propensity for treat-
ment T on features X. Use of the Hajek estimator (1970)
adjustment improves stability compared to simple inverse
propensity.

Stratification divides users into strata based on their
propensity score, and the ATE for each is averaged:
ÂTEstrat = 1

n

∑
k nk ∗ ÂTEk

where n is the total number of users, nk is the number of
users in the k-th stratum, and ÂTEk is the unadjusted ATE
within the k-th stratum. We report results on 10 strata di-
vided evenly by percentile, but results are qualitatively sim-
ilar for other k.

Matching can be considered as a special case of strat-
ification, where each strata contains only one treated user.
We find that matching produces extremely similar results to
stratification, and therefore we include details of our match-
ing approach and results in Appendix F.1.
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6.3 Metrics for Evaluation
Our semi-synthetic tasks are generated such that we know
the true ATE and thus can compute the Bias of ÂTE.
A bias of zero is optimal, indicating a correct estimated
ATE. The greater the bias, positive or negative, the worse
the model performance. This is the primary metric we use
in evaluation, and we compute it for both ÂTEstrat and
ÂTEIPTW. We also consider Treatment Accuracy, the ac-
curacy of the propensity score model’s predictions of binary
treatment assignment. While higher accuracy is often bet-
ter, high accuracy does not guarantee low bias and often is
instead indicative of strong selection effects. Furthermore,
we include two additional metrics in Appendix F.2: First,
the Mean Squared Error of IPTW weights, which cap-
tures the calibration of propensity scores probabilities and
resulting weights, and second, the Spearman’s Rank Cor-
relation. In some cases, even if absolute propensity scores
are incorrect, their relative rank may still contain useful
information that could be exploited in stratification-based
methods. The Spearman Correlation measures the correla-
tion between the true and estimated propensity scores for
each model, with a value of 1 indicating a perfect ranking.

7 Results of Evaluation
We apply all five tasks of our evaluation framework to both
Reddit and Twitter social media data. We found virtually
identical results between the two datasets (e.g. Treatment
Accuracies within 1.9% of one another), and so for brevity
we report primarily on Reddit results here. Complete Twitter
results and discussion are included in Appendix G.

Transformers better model relevant linguistic variation
The Linguistic Complexity task shows many trends in the
results manifest in other tasks, including treatment accu-
racy clustering by text representation (Fig. 4a). SHER-
BERT performs well, with uni- and bi-gram methods some-
where in between. Accuracy correlates fairly well with bias
(Fig. 4b,c). As in nearly all tasks, LDA methods perform
worst, not even outperforming the unadjusted estimator.
This is likely because LDA uses an unsupervised (agnostic
to treatment) method to generate a compressed feature set
that is likely to miss key features when they comprise only a
small part of the overall user history.

Transformer models struggle with counting and order-
ing The Signal Intensity task requires methods to ef-
fectively ‘count’ the number of posts to distinguish be-
tween classes.’ Here, n-gram methods outperform SHER-
BERT (Fig. 4e,f) This suggests that order embeddings are
an important inclusion for future transformer-based meth-
ods. LDA methods perform slightly better than unadjusted,
due to the stronger presence of tokens correlated with treat-
ment.

High accuracy often reflects strong selection effects, not
low ATE bias In the Strength of Selection Effect task, we
decrease the overlap in propensity scores between treated
and untreated users, which makes it easier to distinguish
between the two groups. We see corresponding increases

in Treatment Accuracy (Fig. 4g), however, bias worsens
(Fig. 4h,i). In Appendix F.2, we also consider the Spearman
Correlation, which evaluates propensity scores not on their
absolute accuracy, but on their relative ranking, as in theory
it is possible for inaccurate propensity scores to carry useful
information. We expect the Stratified and Matching Estima-
tors to perform better than IPTW in these cases, e.g. in the
Signal Intensity Task, where the stratified estimate has lower
bias than IPTW (Fig. 4e,f) and the Spearman Correlation is
higher than Treatment Accuracy at the harder difficulty level
(Appendix F.2 Fig. 7d,f).

In context of observational studies, methods with high
treatment accuracy should be used with extreme caution
— high accuracy likely reflects treated and control groups
that are too disjoint for any meaningful comparison to be
drawn. In this case, the common support assumption is vi-
olated, preventing causal inference. This highlights the im-
portance of empirical evaluation of the complete causal in-
ference pipeline.

Transformer models fail with limited data The Sample
Size task explores methods’ performance on small datasets,
a common occurrence in real world applications. Generally,
SHERBERT performs quite well. In this task, SHERBERT
outperforms other methods when trained on the full 3,200
observation training set, but its bias and accuracy quickly
deteriorate to worse than n-gram features when training data
is reduced (Fig. 4j,k,l). When data is especially scarce, prac-
titioners should carefully consider the data-hungry nature of
modern transformer architectures even when they are pre-
trained. A more sophisticated model is not always the best
choice. Furthermore, transfer learning and other means to
reduce training data requirements are an important area of
future work for causal inference method developers.

Methods estimate non-zero ATEs when the true ATE is
zero Alarmingly, in the Placebo Test, every method except
SHERBERT’s stratified estimate failed to include the (cor-
rect) null hypothesis (ATE = 0) in their 95% confidence
intervals across both datasets (Fig. 4n,o), including high ac-
curacy methods using bigram features (Fig. 4m). This cor-
responds to incorrectly rejecting the null hypothesis of no
causal treatment effect at the common p-value threshold
of 0.05. This result is of greatest concern, as 8/9 methods
falsely claim a non-zero effect.

Text representations and propensity score models have
greater impact than estimators Each estimator evaluated
produced overall similar results (Fig. 6), with the quality
of the propensity scores being far more impactful. Meth-
ods often cluster based on their text representations, with
bigram representations generally performing better than un-
igrams, which generally perform better than LDA represen-
tations. There was generally little difference between Logis-
tic Regression and Simple NN methods when trained on the
same text representation. However, the choice of an ATE
estimator is still important. IPTW is more sensitive to ex-
treme or miscalibrated propensity scores. This is visible in
the Strength of Selection Effect task, where the confidence
intervals for IPTW are much larger than for the stratified es-
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Figure 4: Results for tasks computed with Reddit data, with bootstrapped 95% confidence intervals, perturbed along the x-axis
for readability. Columns represent metrics, and rows correspond to tasks. Within each plot, difficulty increases from left to right.
SHERBERT generally does well, especially on Strength of Selection Effect and Placebo Test, but struggles on Signal Intensity.
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timator (Fig. 4h,i).

7.1 Potential Threats to Evaluation Framework
Validity

Many of our evaluation tasks (§5.2) append more synthetic
posts to class 1 histories than class 2 histories. As a
result, class 1 histories will be 1-3 posts longer, in ex-
pectation, than those from class 1. Relative to the lengths
of these histories (mean 41.1, standard deviation 19.3), this
is a small difference, but in principle, a causal inference
method may be able to pick up on the length of the his-
tory, an artifact of our framework, rather than the textual
clues provided by the synthetic posts themselves. In prac-
tice, however, evidence from the Signal Intensity Task sug-
gests that this is very unlikely, as every method tested, in-
cluding SHERBERT, struggles with the to differentiate be-
tween histories by counting the number of synthetic posts
(Fig. 4e,f). Thus, if we replaced a random post with a syn-
thetic post, instead of appending, we would find very similar
results. As methods improve and are better able to differen-
tiate sequence lengths, such a random replacement strategy
would be a reasonable and straightforward extension to our
framework.

Additionally, our evaluation tasks (§5.2) always append
synthetic posts to users’ histories. We conducted additional
experiments using an ‘Order of Text’ task (Appendix H) to
evaluate widely used methods’ ability to represent the order
of posts in a user’s history, and find that every method eval-
uated, including SHERBERT, completely fails to represent
order. This is mostly a result of currently used text repre-
sentations, primarily n-grams, which aggregate across histo-
ries by counting occurrences of tokens. For brevity, details
of this task are included in Appendix H. We make this task
public, along with all other tasks, to assist in the evaluation
of future methods. We invite extensions and adaptions of our
framework.

8 Implications & Conclusions
Causal inferences are difficult to evaluate in the absence of
ground truth causal effects – a limitation of virtually all real
world observational studies. Despite this absence, we can
compare different methods’ estimates and demonstrate that
different methods regularly disagree with one another.

Empirical evaluation requires knowledge of the true treat-
ment effects. Our proposed evaluation framework is reflec-
tive of five key challenges for causal inference in natural lan-
guage, and is easily extensible to include different forms of
confounders, different synthetic text content, and non-binary
treatments and outcomes (§5.3).

Our goal with this work is not to unilaterally pronounce
one method as superior to another. Instead, we hope that
methods developers and practitioners will comprehensively
consider the challenges of making valid causal inferences
we have described here, as well as assumptions they may
be relying upon, and will use our framework to evaluate
their methods empirically. To this end, we evaluate every
commonly used propensity score method to produce key in-
sights:

For methods developers, we find that continued develop-
ment of transformer-based models offers a promising path
towards rectifying deficiencies of existing models. Models
are needed that can effectively represent the order of text,
variability in expression, and the counts of key tokens. Given
the limited availability of training data in many causal infer-
ence applications, more research is needed in adapting pre-
trained transformers to small data settings (Gururangan et al.
2020). We hope our public framework10 will provide a prin-
cipled method for evaluating future NLP models for causal
inference.
For practitioners, we find that transformer-based methods
such as SHERBERT, which we make publicly available,9
perform the best in most cases except those with very limited
data. Propensity score models with high accuracy should be
applied with great care, as this is likely indicative of a strong
and unadjustable selection effect. Many methods failed our
placebo test by making false causal discoveries, a major
problem (Aarts et al. 2015; Freedman, Cockburn, and Sim-
coe 2015).
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