
Dynamic Network Embeddings: From Random Walks to Temporal Random Walks

Giang H. Nguyen, John Boaz Lee
Worcester Polytechnic Institute
{ghnguyen,jtlee}@wpi.edu

Ryan A. Rossi
Adobe Research

rrossi@adobe.com

Nesreen K. Ahmed
Intel Labs

nesreen.k.ahmed@intel.com

Eunyee Koh, Sungchul Kim
Adobe Research

{eunyee,sukim}@adobe.com

Abstract—Networks evolve continuously over time with the
addition, deletion, and changing of links and nodes. Although
many networks contain this type of temporal information,
the majority of research in network representation learning
has focused on static snapshots of the graph and has largely
ignored the temporal dynamics of the network. In this work,
we describe a general framework for incorporating temporal
information into network embedding methods. The framework
gives rise to methods for learning time-respecting embeddings
from continuous-time dynamic networks. Overall, the experi-
ments demonstrate the effectiveness of the proposed framework
and dynamic network embedding approach as it achieves an
average gain of 11.9% across all methods and graphs. The
results indicate that modeling temporal dependencies in graphs
is important for learning appropriate and meaningful network
representations.

Keywords-Temporal random walks, dynamic networks, tem-
poral node embeddings, network representation learning

I. INTRODUCTION

The majority of real-world networks are naturally dynamic—
evolving over time with the addition, deletion, and changing
of nodes and links. The temporal information in these
networks is known to be important to accurately model,
predict, and understand network data [1], [2]. Despite the
importance of these dynamics, the majority of previous work
on embedding methods have ignored the temporal information
in network data [3], [4], [5], [6], [7], [8], [9], [10], [11], [12].

We address the problem of learning an appropriate net-
work representation from continuous-time dynamic networks
(Figure 1) for improving the accuracy of predictive models.
We propose continuous-time dynamic network embeddings
(CTDNE) and describe a general framework for learning
such embeddings based on the notion of temporal random
walks (walks that respect time). The framework is general
with many interchangeable components and can be used in a
straightforward fashion for incorporating temporal dependen-
cies into existing node embedding and deep graph models
that use random walks. Most importantly, the CTDNEs are
learned from temporal random walks that represent actual
temporally valid sequences of node interactions and thus
avoids the issues and information loss that arises when time
is ignored (e.g., [3], [4], [5], [6], [7], [8], [9], [10], [11], [12])
or approximated as a sequence of discrete static snapshot
graphs (Figure 2) as done in previous work (e.g., [13],
[14], [15], [16], [17]). The result is a more appropriate time-

v2

v1

v4

v3 v5

v6

1

3,54

8

7

10

2

Figure 1. Dynamic network. Edges are labeled by time. Observe that
existing methods that ignore time would consider v4−→v1−→v2 a valid
walk, however, v4−→v1−→v2 is clearly invalid with respect to time since
v1−→ v2 exists in the past with respect to v4−→ v1. In this work, we
propose the notion of temporal random walks for embeddings that capture
the true temporally valid behavior in networks.

dependent network representation that captures the important
temporal properties of the continuous-time dynamic network
at the finest most natural temporal granularity without loss of
information while using walks that are temporally valid (as
opposed to walks that do not obey time and thus are invalid
and noisy as they represent sequences that are impossible
with respect to time). Hence, the framework allows existing
embedding methods to be easily adapted for learning more
appropriate network representations from continuous-time
dynamic networks by ensuring time is respected and avoiding
impossible sequences of events.

The proposed approach learns a more appropriate network
representation from continuous-time dynamic networks that
captures the important temporal dependencies of the network
at the finest most natural granularity (e.g., at a time scale of
seconds or milliseconds). This is in contrast to approximating
the dynamic network as a sequence of static snapshot graphs
G1, . . . , Gt where each static snapshot graph represents
all edges that occur between a user-specified discrete-time
interval (e.g., day or week) [18], [19], [20]. Besides the
obvious loss of information, there are many other issues such
as selecting an appropriate aggregation granularity which is
known to be an important and challenging problem that can
lead to poor predictive performance or misleading results.

We demonstrate the effectiveness of the proposed frame-
work and generalized dynamic network embedding method
for temporal link prediction in several real-world networks
from a variety of application domains. Overall, the proposed
method achieves an average gain of 11.9% across all methods
and graphs. The results indicate that modeling temporal
dependencies in graphs is important for learning appropriate
and meaningful network representations. In addition, any

existing embedding method or deep graph model that uses
random walks can benefit from the proposed framework
(e.g., [3], [4], [8], [11], [9], [21], [10], [12]) as it serves as a
basis for incorporating important temporal dependencies into
existing methods. Methods generalized by the framework are
able to learn more meaningful and accurate time-dependent
network embeddings that capture important properties from
continuous-time dynamic networks.

Previous embedding methods and deep graph models
that use random walks search over the space of random
walks S on G, whereas the class of models (continuous-time
dynamic network embeddings) proposed in this work learn
temporal embeddings by searching over the space ST of
temporal random walks that obey time and thus ST includes
only temporally valid walks. Informally, a temporal walk
St from node vi1 to node viL+1

is defined as a sequence
of edges {(vi1 , vi2 , ti1), (vi2 , vi3 , ti2), . . . , (viL , viL+1

, tiL)}
such that ti1 ≤ ti2 ≤ . . . ≤ tiL . A temporal walk represents
a temporally valid sequence of edges traversed in increasing
order of edge times and therefore respect time. For instance,
suppose each edge represents a contact (e.g., email, phone
call, proximity) between two entities, then a temporal random
walk represents a feasible route for a piece of information
through the dynamic network. It is straightforward to see that
existing methods that ignore time learn embeddings from a
set of random walks that are not actually possible when time
is respected and thus represent invalid sequences of events.

The sequence that links (events) occur in a network carries
important information, e.g., if the event (link) represents an
email communication sent from one user to another, then the
state of the user who receives the email message changes in
response to the email communication. For instance, suppose
we have two emails ei = (v1, v2) from v1 to v2 and ej =
(v2, v3) from v2 to v3; and let T (v1, v2) be the time of
an email ei = (v1, v2). If T (v1, v2) < T (v2, v3) then the
message ej = (v2, v3) may reflect the information received

G1

v2

v1

v4

v3 v5

v6

G2

v2

v1

v4

v3 v5

v6

Figure 2. Noise and information loss occurs when the true dynamic
network (Figure 1) is approximated as a sequence of discrete static snapshot
graphs G1, . . . , Gt using a user-defined aggregation time-scale s (temporal
granularity). Suppose the dynamic network in Figure 1 is used and s = 5,
then G1 includes all edges in the time-interval [1, 5] whereas G2 includes
all edges in [6, 10] and so on. Notice that in the static snapshot graph G1

the walk v4−→v1−→v2 is still possible despite it being invalid while the
perfectly valid temporal walk v1−→v2−→v5 is impossible. Both cases are
captured correctly without any loss using the proposed notion of temporal
walk on the actual dynamic network.

from the email communication ei = (v1, v2). However, if
T (v1, v2) > T (v2, v3) then the message ej = (v2, v3) cannot
contain any information communicated in the email ei =
(v1, v2). This is just one simple example illustrating the
importance of modeling the actual sequence of events (email
communications). Embedding methods that ignore time are
prone to many issues such as learning inappropriate node
embeddings that do not accurately capture the dynamics
in the network such as the real-world interactions or flow
of information among nodes. An example of information
loss that occurs when time is ignored or the actual dynamic
network is approximated using a sequence of discrete static
snapshot graphs is shown in Figure 1 and 2, respectively.

The proposed approach has the following desired properties:
• General & Unifying Framework: We present a frame-

work for incorporating temporal dependencies in node
embedding and deep graph models that use random walks.

• Temporally Valid: Embeddings are learned based on the
proposed notion of temporal random walks that captures
the temporally valid interactions (e.g., flow of information,
etc) in the dynamic network in a lossless fashion.

• Continuous-Time Dynamic Network Embeddings
(CTDNEs): We introduce CTDNEs that are temporally
valid embeddings learned at the finest temporal granularity.
CTDNEs do not have the issues and information loss that
arise when the dynamic network is approximated as a
sequence of discrete static snapshot graphs.

• Effectiveness: The proposed approach is shown to be
effective for learning dynamic network representations.
We achieve an average gain in AUC of 11.9% across all
methods and graphs from various application domains.

II. FRAMEWORK

This section introduces continuous-time dynamic network em-
beddings (CTDNE) and describes a general framework for de-
riving them based on the notion of temporal random walks.

A. Temporal Model

In this work, instead of approximating the dynamic network
as a sequence of lossy discrete static snapshot graphs
defined as G1, . . . , GT where Gi = (V,Et) and Et are the
edges active between the timespan [ti−1, ti], we model the
temporal interactions in a lossless fashion as a continuous-
time dynamic network (CTDN) defined formally as:
DEFINITION 1 (CONTINUOUS-TIME DYNAMIC NETWORK)
Given a graph G = (V,ET , T), let V be a set of vertices, and
ET ⊆ V ×V ×R+ be the set of temporal edges between vertices
in V , and T : E → R+ is a function that maps each edge to
a corresponding timestamp. At the finest granularity, each edge
ei = (u, v, t) ∈ ET may be assigned a unique time t ∈ R+.

In continuous-time dynamic networks (i.e., temporal net-
works), events denoted by edges occur over a time span
T ⊆ T where T is the temporal domain. For continuous-
time systems T = R+. In such networks, a valid walk is

defined as a sequence of nodes connected by edges with
non-decreasing timestamps. In other words, if each edge
captures the time of contact between two entities, then a
(valid temporal) walk may represent a feasible route for a
piece of information. More formally,
DEFINITION 2 (TEMPORAL WALK) A temporal walk from
v1 to vk in G is a sequence of vertices 〈v1, v2, · · · , vk〉 such
that 〈vi, vi+1〉 ∈ ET for 1 ≤ i < k, and T (vi, vi+1) ≤
T (vi+1, vi+2) for 1 ≤ i < (k − 1). For two arbitrary vertices u,
v ∈ V , we say that u is temporally connected to v if there exists
a temporal walk from u to v.

A temporally invalid walk is a walk that does not respect
time. Any method that uses temporally invalid walks or
approximates the dynamic network as a sequence of static
snapshot graphs is said to have temporal loss.

We introduce the problem of learning continuous-time
dynamic network embeddings (CTDNEs) for continuous-
time dynamic networks as follows:
DEFINITION 3 (CONTINUOUS-TIME DYNAMIC NETWORK
EMBEDDING) Given a dynamic network G = (V,ET , T), the
goal is to learn a function f : V → RD that maps nodes in
the continuous-time dynamic network G to D-dimensional time-
dependent embeddings using only data that is temporally valid
(e.g., temporal walks defined in Definition 2).

Unlike previous work that ignores time or approximates the
dynamic network as a sequence of discrete static snapshot
graphs G1, . . . , Gt, CTDNEs proposed in this work are
learned from temporal random walks that capture the true
temporal interactions (e.g., flow of information, spread of
diseases, etc.) in the dynamic network in a lossless fashion.

The proposed CTDNE framework has two main inter-
changeable components that allow the user to temporally
bias the learning of time-dependent network representations.
We describe each component in Section II-B and II-C.

B. Initial Temporal Edge Selection

This section describes approaches for selecting the initial
temporal edge to begin the temporal random walk. In general,
each temporal walk starts from a temporal edge ei ∈ ET at
time t = T selected from a distribution Fs. The distribution
used to select the initial temporal edge can either be uniform
(unbiased) or temporally biased using an arbitrary weighted
(non-uniform) distribution for Fs. For instance, to learn node
embeddings for the temporal link prediction task, we may
want to begin more temporal walks from edges closer to the
current time point as the events/relationships in the distant
past may be less predictive of the state of the system now.

1) Unbiased: To select the initial edge in an unbiased
fashion, each edge ei = (v, u, t) ∈ ET has the same
probability of being selected:

P(e) = 1/|ET | (1)

This corresponds to selecting the initial temporal edge using
a uniform distribution.

0 0.5 1 1.5 2 2.5 3

Time 10
4

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty

Uniform

Linear

Exponential

Figure 3. Example initial edge selection cumulative probability distributions
(CPDs) for each of the variants investigated (uniform, linear, and exponential).
Observe that exponential biases the selection of the initial edge towards
those occurring more recently than in the past, whereas linear lies between
exponential and uniform.

2) Biased: We describe two techniques to temporally bias
the selection of the initial edge that determines the start of
the temporal random walk. In particular, we select the initial
temporal edge using a temporally weighted distribution based
on exponential and linear functions. However, the proposed
continuous-time dynamic network embedding framework is
flexible with many interchangeable components and therefore
can easily support other temporally weighted distributions
for selecting the initial temporal edge.

Exponential: We can also bias initial edge selection using
an exponential distribution, in which case each edge e ∈ ET
is assigned the probability:

P(e) =
exp

[
T (e)− tmin]∑

e′∈ET
exp

[
T (e′)− tmin]

(2)

where tmin is the minimum time associated with an edge in
the dynamic graph. This defines a distribution that heavily
favors edges appearing later in time.

Linear: When the time difference between two time-wise
consecutive edges is large, it can sometimes be helpful to
map the edges to discrete time steps. Let η : ET → Z+ be
a function that sorts (in ascending order by time) the edges
in the graph. In other words η maps each edge to an index
with η(e) = 1 for the earliest edge e. In this case, each edge
e ∈ η(ET) will be assigned the probability:

P(e) =
η(e)∑

e′∈ET
η(e′)

(3)

See Figure 3 for examples of the different variants.

C. Temporal Random Walks

After selecting the initial edge ei = (u, v, t) at time t to
begin the temporal random walk (Section II-B) using Fs,
how can we perform a temporal random walk starting from
that edge? We define the set of temporal neighbors of a node
v at time t as follows:

DEFINITION 4 (TEMPORAL NEIGHBORHOOD) The set of tem-
poral neighbors of a node v at time t denoted as Γt(v) are:

Γt(v) =
{

(w, t′) | e = (v, w, t′) ∈ ET ∧ T (e) > t
}

(4)

v3

v2v1

v5

v4

v8

v6

t=6

4

1

7

9

8,10

Figure 4. Temporal neighborhood of a node v2 at time t = 6 denoted
as Γt(v2). Notice that Γt(v2) = {v4, v3, v5, v3} is an ordered multiset
where the temporal neighbors are sorted in ascending order by time with
the nodes more recent appearing first. Moreover, the same node can appear
multiple times (e.g., a user sends another user multiple emails, or an
association/event occurs multiple times between the same entities). This
is in contrast to the definition of neighborhood used by previous work
that is not parameterized by time, e.g., Γ(v2) = {v3, v4, v5, v6, v8} or
Γ(v2) = {v3, v3, v4, v5, v6, v8} if multigraphs are supported.

Observe that the same neighbor w can appear multiple times
in Γt(v) since multiple temporal edges can exist between the
same pair of nodes (Figure 4). The next node in a temporal
random walk can then be chosen from the set Γt(v). Here we
use a second distribution FΓ to temporally bias the neighbor
selection. For instance, we may want to bias the sampling
strategy towards walks that exhibit smaller “in-between” time
for consecutive edges. That is, for each consecutive pair of
edges (u, v, t), and (v, w, t+k) in the random walk, we want
k to be small. For temporal link prediction on a dynamic
social network, restricting the “in-between” time allows us to
sample walks that do not group friends from different time
periods together.

1) Unbiased: For unbiased temporal neighbor selection,
given an arbitrary edge e = (u, v, t), each temporal neighbor
w ∈ Γt(v) of node v at time t has the following probability
of being selected:

P(w) = 1/|Γt(v)| (5)

2) Biased: We describe two techniques to bias the
temporal random walks by sampling the next node in a
temporal walk via temporally weighted distributions based
on exponential and linear functions. However, the continuous-
time dynamic network embedding framework is flexible
and can easily be used with other application or domain-
dependent temporal bias functions.

Exponential: When exponential decay is used, we formulate
the probability as follows. Given an arbitrary edge e =
(u, v, t), each temporal neighbor w ∈ Γt(v) has the following
probability of being selected:

P(w) =
exp
[
τ(w)− τ(v)

]∑
w′∈Γt(v) exp

[
τ(w′)− τ(v)

] (6)

Note that we abuse the notation slightly here and use τ to
mean the mapping to the corresponding time. This is similar
to the exponentially decaying probability of consecutive
contacts observed in the spread of computer viruses [22].

Linear: Here, we define δ : V × R+ → Z+ as a function
which sorts temporal neighbors in descending order time-

wise. The probability of each temporal neighbor w ∈ Γt(v)
of node v at time t is then defined as:

P(w) =
δ(w)∑

w′∈Γt(v) δ(w
′)

(7)

This distribution biases the selection towards edges that are
closer in time to the current node.

3) Temporal Context Windows: Since temporal walks
preserve time, it is possible for a walk to run out of temporally
valid edges to traverse. Therefore, we do not impose a strict
length on the temporal random walks. Instead, we simply
require each temporal walk to have a minimum length ω (in
this work, ω is equivalent to the context window size for
skip-gram [23]). A maximum length L can be provided to
accommodate longer walks. A temporal walk Sti with length
|Sti | is considered valid iff

ω ≤ |Sti | ≤ L

Given a set of temporal random walks {St1 ,St2 , · · · ,Stk},
we define the temporal context window count β as the total
number of context windows of size ω that can be derived
from the set of temporal random walks. Formally, this can
be written as:

β =

k∑
i=1

(
|Sti | − ω + 1

)
(8)

When deriving a set of temporal walks, we typically set β
to be a multiple of N = |V |.

D. Learning Time-preserving Embeddings

Given a temporal walk St, we can now formulate the task
of learning time-preserving node embeddings in a CTDN as
the optimization problem:

max
f

logP
(
WT = {vi−ω, · · · , vi+ω} \ vi | f(vi)

)
(9)

where f : V → RD is the node embedding function, ω is
the context window size for optimization, and

WT = {vi−ω, · · · , vi+ω}

such that

T (vi−ω, vi−ω+1) < · · · < T (vi+ω−1, vi+ω)

is an arbitrary temporal context window WT ⊆ St. For
tractability, we assume conditional independence between
the nodes of a temporal context window when observed with
respect to the source node vi. That is:

P
(
WT |f(vi)

)
=

∏
vi+k∈WT

P
(
vi+k|f(vi)

)
(10)

We can model the conditional likelihood of every source-
nearby node pair (vi, vj) as a softmax unit parameterized by

a dot product of their feature vectors:

P
(
vj |f(vi)

)
=

exp
[
f(vj) · f(vi)

]∑
vk∈V exp

[
f(vk) · f(vi)

] (11)

Using Eq. 10- 11, the optimization problem in Eq. 9 reduces
to:

max
f

∑
vi∈V

(
− logZi +

∑
vj∈WT

f(vj) · f(vi)

)
(12)

where the term Zi =
∑
vj∈V exp

[
f(vi) · f(vj)

]
can be

approximated by negative sampling. Given a graph G, let
S be the space of all possible random walks on G and let
ST be the space of all temporal random walks on G. It is
straightforward to see that the space of temporal random
walks ST is contained within S, and ST represents only a tiny
fraction of possible random walks in S. Existing methods
sample a set of random walks S from S whereas this work
focuses on sampling a set of temporal random walks St
from ST ⊆ S. In general, the probability of an existing
method sampling a temporal random walk from S by chance
is extremely small and therefore the vast majority of random
walks sampled by these methods represent sequences of
events between nodes that are invalid (not possible) when
time is respected.

We summarize a procedure to learn CTDNEs in Algo-
rithm 1. This procedure generalizes the Skip-Gram architec-
ture to learn continuous-time dynamic network embeddings
(CTDNEs). However, the framework can easily be used
for other deep graph models that leverage random walks
(e.g., [12]) as the temporal walks can serve as input vectors
for neural networks. There are many methods that can be
adapted to learn CTDN embeddings using temporal random
walks (e.g., node2vec [4], struc2vec [8], role2vec [24]) and
the proposed framework is not tied to any particular approach.

E. Model Variants
The proposed CTDNE framework has two main interchange-
able components that give rise to a variety of useful models.
In particular, the distribution Fs to select the starting edge
e∗ of a temporal random walk (Section II-B) and the other
distribution FΓ used to bias the selection of each subsequent
edge in a temporal random walk (Section II-C). Thus,
different distributions Fs and FΓ can be used to bias the
temporal random walk sampling strategy.

III. ANALYSIS

Let N = |V | denote the number of nodes, M = |ET | be the
number of edges, D = dimensionality of the embedding, R =
the number of temporal walks per node, L = the maximum
length of a temporal random walk, and ∆ = the maximum
degree of a node. Recall that while R is not required, we
use it here since the number of temporal random walks |ST |
is a multiple of the number of nodes N = |V | and thus can
be written as RN similar to previous work.

Algorithm 1 Continuous-Time Dynamic Network Embeddings
Input:

a (un)weighted and (un)directed dynamic network G = (V,ET , T),
temporal context window count β, context window size ω,
embedding dimensions D

1 Set maximum walk length L = 80

2 Initialize set of temporal walks ST to ∅
3 Initialize number of temporal context windows C = 0

4 Precompute sampling distribution Fs using G
Fs ∈ {Uniform, Exponential, Linear}

5 G′ = (V,ET , T ,Fs)

6 while β − C > 0 do
7 Sample an edge e∗ = (v, u) via distribution Fs

8 t = T (e∗)

9 St = TEMPORALWALK(G′, e∗ = (v, u), t, L, ω + β − C − 1)

10 if |St| > ω then
11 Add the temporal walk St to ST
12 C = C + (|St| − ω + 1)

13 end while
14 Z = STOCHASTICGRADIENTDESCENT(ω,D,ST)

15 return the dynamic node embedding matrix Z

Algorithm 2 Temporal Random Walk
1 procedure TEMPORALWALK(G′, e = (s, r), t, L, C)
2 Initialize temporal walk St =

[
s, r

]
3 Set i = r . current node
4 for p = 1 to min(L,C)− 1 do
5 Γt(i) =

{
(w, t′) | e = (i, w, t′) ∈ ET ∧ T (i) > t

}
6 if |Γt(i)| > 0 then
7 Select node j from distribution FΓ(Γt(i))

8 Append j to St

9 Set t = T (i, j)

10 Set i = j
11 else terminate temporal walk

12 return temporal walk St of length |St| rooted at node s

A. Time Complexity

LEMMA 1 The time complexity for learning CTDNEs using
the generalized Skip-gram architecture in Section II-D is

O(M +N(R logM +RL∆ +D)) (13)

and the time complexity for learning CTDNEs with unbiased
temporal random walks (uniform) is:

O(N(R logM +RL log ∆ +D)) (14)

PROOF. The time complexity of each of the three steps is
provided below. We assume the exponential variant is used
for both Fs and FΓ since this CTDNE variant is the most
computationally expensive among the nine CTDNE variants
expressed from using uniform, linear, or exponential for Fs
and FΓ. WLOG we assume ET is sorted in increasing order
of time such that T (e1) ≤ T (e2) ≤ · · · ≤ T (eM). Similarly,
the neighbors of each node are also ordered in increasing
order of time.

Initial Temporal Edge Selection: To derive Fs for any of
the variants used in this work (uniform, linear, exponential)
it takes O(M) time since each variant can be computed with

a single or at most two passes over the edges. Selecting an
initial edge via Fs takes O(logM) time. Now Fs is used to
select the initial edge for each temporal random walk St ∈ ST
and thus an initial edge is selected RN = |ST | times. This
gives a total time complexity of O(M +RN logM).1

Temporal Random Walks: After the initial edge is
selected, the next step is to select the next temporally valid
neighbor from the set of temporal neighbors Γt(v) of a
given node v at time t using a (weighted) distribution
FΓ (e.g., uniform, linear, exponential). Note FΓ must be
computed and maintained for each node. Given a node v
and a time t∗ associated with the previous edge traversal
in the temporal random walk, the first step in any variant
(uniform, linear, exponential; Section II-C) is to obtain the
ordered set of temporal neighbors Γt(v) ⊆ Γ(v) of node v
that occur after t∗. Since the set of all temporal neighbors
is already stored and ordered by time, we only need to find
the index of the neighbor w ∈ Γ(v) with time t > t∗ as
this gives us Γt(v). Therefore, Γt(v) is derived in log |Γ(v)|
via a binary search over the ordered set Γ(v). In the worst
case, O(log ∆) where ∆ = maxv∈V |Γ(v)| is the maximum
degree. After obtaining Γt(v) ⊆ Γ(v), we derive FΓ in O(∆)
time when dv = ∆. Now, selecting the next temporally valid
neighbor according to FΓ takes O(log ∆) for exponential
and linear and o(1) for uniform. For the uniform variant, we
select the next temporally valid neighbor in o(1) constant
time by j ∼ UniformDiscrete{1, 2, . . . , |Γt(v)|} and then
obtain the selected temporal neighbor by directly indexing
into Γt(v). Therefore, the worst-case time complexity to
select the next node in a biased temporal random walk is
O(log ∆ + ∆) = O(∆) and O(log ∆) for unbiased.

For a temporal random walk of length L, the time complex-
ity is O(L∆) for a biased walk with linear/exponential and
O(L log ∆) for an unbiased walk. Therefore, the worst-case
time complexity for RN biased temporal random walks of
length L is O(RNL∆) and O(RNL log ∆) for unbiased.

Learning time-dependent embeddings: For the Skip-
Gram-based generalization given in Section II-D, the time
complexity per iteration of Stochastic Gradient Descent
(SGD) is O(ND) where D � N . Nevertheless, the choice
of optimization scheme depends on the objective function
of the embedding method generalized via the CTDNE
framework [25], [26].

B. Space Complexity

Storing the Fs distribution takes O(M) space. The temporal
neighborhoods do not require any additional space (as we
simply store an index). Storing FΓ takes O(∆) (which can
be reused for each node in the temporal random walk). The
embedding matrix Z takes O(ND) space. Therefore, the
space complexity is O(M +ND + ∆) = O(M +ND).

1Note for uniform initial edge selection, the time complexity is linear in
the number of temporal random walks O(RN).

IV. EXPERIMENTS

The experiments are designed to investigate the effectiveness
of the proposed CTDNE framework for prediction. The time
scale of all dynamic networks investigated is at the level of
seconds or milliseconds. Our approach uses the finest time
scale available in the graph data as input. All data is from
NetworkRepository [27].

A. Experimental setup
Since this work is the first to learn embeddings over a CTDN,
there are no methods that are directly comparable. Neverthe-
less, we evaluate the framework presented in Section II for
learning continuous-time dynamic network representations
by first comparing CTDNE against a number of recent em-
bedding methods including node2vec [4], DeepWalk [3], and
LINE [5]. For node2vec, we use the same hyperparameters
(D = 128, R = 10, L = 80, ω = 10) and grid search over
p, q ∈ {0.25, 0.50, 1, 2, 4} as mentioned in [4]. We use the
same hyperparameters for DeepWalk but with p = q = 1 as
it is a special case of node2vec. As for the CTDNE methods,
we use ω = 10 and D = 128. For LINE, we use D = 128
with 2nd-order proximity and T = 60 million samples.

Table I
AUC SCORES FOR TEMPORAL LINK PREDICTION.

DATA DeepWalk Node2Vec LINE CTDNE (GAIN)

ia-contact 0.845 0.874 0.736 0.913 (+10.37%)
ia-hypertext09 0.620 0.641 0.621 0.671 (+6.51%)

ia-enron-employees 0.719 0.759 0.550 0.777 (+13.00%)
ia-radoslaw-email 0.734 0.741 0.615 0.811 (+14.83%)

ia-email-eu 0.820 0.860 0.650 0.890 (+12.73%)
fb-forum 0.670 0.790 0.640 0.826 (+15.25%)

soc-bitcoinA 0.840 0.870 0.670 0.891 (+10.96%)
soc-wiki-elec 0.820 0.840 0.620 0.857 (+11.32%)

B. Comparison
We evaluate the performance of the proposed framework
on the temporal link prediction task. To generate a set of
labeled examples for link prediction, we first sort the edges
in each graph by time (ascending) and use the first 75% for
representation learning. The remaining 25% are considered
as positive links and we sample an equal number of negative
edges randomly. We take care to ensure edges in the training
set do not appear in the test set and vice-versa. We perform
link prediction on this labeled data X of positive and negative
edges. After the embeddings are learned for each node, we
derive edge feature vectors. More formally, given embedding
vectors zi and zj for node i and j, we derive an edge
embedding vector zij ∈ RD as zij = Φ(zi, zj) where

Φ ∈
{

(zi+zj)
/

2, zi�zj , |zi − zj | , (zi−zj)
◦2} (15)

and zi � zj is the element-wise product and z◦2 is the
Hadamard power. We use logistic regression with hold-out
validation of 25%. Experiments are repeated for 10 random
seed initializations and average performance is reported.

Table II
RESULTS FOR DIFFERENT CTDNE VARIANTS

Fs is the distribution for initial edge sampling and FΓ is the distribution
for temporal neighbor sampling.

Variant
Fs FΓ contact hyper enron rado

Unif (Eq. 1) Unif (Eq. 5) 0.913 0.671 0.777 0.811
Unif (Eq. 1) Lin (Eq. 7) 0.903 0.665 0.769 0.797
Lin (Eq. 3) Unif (Eq. 5) 0.915 0.675 0.773 0.818
Lin (Eq. 3) Lin (Eq. 7) 0.903 0.667 0.782 0.806
Exp (Eq. 2) Exp (Eq. 6) 0.921 0.681 0.800 0.820
Unif (Eq. 1) Exp (Eq. 6) 0.913 0.670 0.759 0.803
Exp (Eq. 2) Unif (Eq. 5) 0.920 0.718 0.786 0.827
Lin (Eq. 3) Exp (Eq. 6) 0.916 0.681 0.782 0.823
Exp (Eq. 2) Lin (Eq. 7) 0.914 0.675 0.747 0.817

For fair comparison, we ensure the same amount of
information is used for learning by all baseline methods.
In particular, the number of temporal context windows is
β = R × N × (L − ω + 1) where R denotes the number
of walks for each node and L is the length of a random
walk required by the baseline methods. Recall that R and
L are not required by CTDNE and are only used above
to ensure that all methods use exactly the same amount
of information for evaluation purposes. Note since CTDNE
does not collect a fixed amount of random walks (of a fixed
length) for each node as done by many other embedding
methods [3], [4], instead the user simply specifies the #
of temporal context windows (expected) per node and the
total number of temporal context windows β is derived as a
multiple of the number of nodes N = |V |. Hence, CTDNE
is also easier to use as it requires a lot less hyperparameters
that must be carefully tuned by the user.

Table I shows the performance of all the compared methods
on the temporal link prediction task. For this experiment,
we use the simplest CTDNE variant from the proposed
framework and did not apply any additional bias to the
selection strategy. In other words, both Fs and FΓ are set
to the uniform distribution. We note, however, that since
our temporal walks are time-obeying (by Definition 2), the
selection is already biased towards edges that appear later
in time as the random walk traversal does not go back in
time. Here we see that the proposed approach performs
consistently better than DeepWalk, node2vec, and LINE.
This is an indication that important information is lost when
temporal information is ignored. Strikingly, our model does
not leverage the bias introduced by node2vec [4], and yet
it still outperforms this model by a significant margin. We
could have generalized node2vec in a similar manner using
the proposed framework from Section II. Obviously, we can
expect to achieve even better predictive performance by using
the CTDNE framework to derive a continuous-time node2vec
generalization by replacing the notion of random walks in
node2vec with the notion of temporal random walks biased
by the (weighted) distributions Fs and FΓ.

The last column of Table I provides the mean gain

in ROC-AUC averaged over all embedding methods for
each dynamic network. In all cases, the proposed approach
significantly outperforms the other embedding methods across
all dynamic networks. Notably, we achieve an overall gain
in AUC of 11.9% across all embedding methods and graphs.
These results indicate that modeling and incorporating the
temporal dependencies in graphs is important for learning
appropriate and meaningful network representations. It is
also worth noting that many other approaches that leverage
random walks can also be generalized using the proposed
framework [8], [11], [9], [21], [12], as well as any future
state-of-the-art embedding method.

Results for a variety of other variants of the proposed
framework are shown in Table II. Overall, we find that using
a biased distribution (e.g., linear or exponential) improves
predictive performance in terms of AUC compared to the
uniform distribution on many graphs.

We also investigated the difference between CTDNEs
proposed in this work and discrete-time dynamic network
embeddings (DTDNEs) defined as any embedding derived
from a sequence of discrete static snapshot graphs G =
{G1, G2, . . . , Gt}. All existing work to date for temporal
networks have focused on DTDNE methods as opposed
to the class of CTDNE methods proposed in this work.
Notice that DTDNE methods use approximations of the
actual dynamic network whereas CTDN embeddings do not
and leverage the actual valid temporal information without
any temporal loss. In this experiment, we create discrete
snapshot graphs and learn embeddings for each one using
the previous approaches. For each snapshot graph, we learn
a (D/T)-dimensional embedding and concatenate them all
to obtain a D-dimensional embedding and then evaluate the
embedding for link prediction as described previously.

One problem common with DTDNE methods is how to
handle nodes that are not active in a given static snapshot
graph Gi (i.e., the node has no edges that occur in Gi). In
such situations, we set the node embedding for that static
snapshot graph to all zeros. However, we also used the
embedding from the last active snapshot graph as well as the
mean embedding of the active nodes and observed similar
results. More importantly, unlike DTDNE methods that have
many issues and heuristics required to handle them (e.g.,
the time-scale, how to handle inactive nodes, etc), CTDNEs
do not. This is yet again another advantage of the CTDN
embeddings introduced in this work. Results are provided in
Table III. Since node2vec always performs the best among
the baseline methods (Table I), we use it as a basis for the

Table III
RESULTS COMPARING DTDNES TO CTDNES (AUC)

DATA DTDNE CTDNE (GAIN)

ia-contact 0.843 0.913 (+8.30%)
ia-hypertext09 0.612 0.671 (+9.64%)

ia-enron-employees 0.721 0.777 (+7.76%)
ia-radoslaw-email 0.785 0.811 (+3.31%)

DTDN embeddings. For each graph, we carefully selected
an appropriate time-scale for the DTDNE methods. Overall,
the proposed CTDNEs perform better than the DTDNEs as
shown in Table III. Note that CTDNE in Table III corresponds
to using uniform for both Fs and FΓ. Obviously, better results
can be achieved by learning Fs and FΓ automatically as
shown in Table II. The gain in AUC for each graph is shown
in the rightmost column in Table III. The mean gain in AUC
of CTDNE compared to DTDNE over all graphs is 7.25%.

V. RELATED WORK

Most existing work on node embedding and network represen-
tation in general have ignored time. A few work have begun
to explore the problem of learning node embeddings from
temporal networks [13], [14], [15], [28], [16], [17]. However,
all existing approaches approximate the dynamic network
as a sequence of discrete static snapshot graphs, which are
fundamentally different from the class of continuous-time
dynamic network embedding methods introduced in this
work. Notably, this work is the first to propose temporal
random walks for embeddings as well as CTDN embeddings
that use temporal walks to capture the actual temporally
valid sequences observed in the CTDN; and thus avoids
the issues and information loss that arises when embedding
methods simply ignore time or use discrete static snapshot
graphs (See Figure 2 for one example). Furthermore, we
introduce a unifying framework that can serve as a basis
for generalizing other random walk based deep learning
(e.g., [12]) and embedding methods (e.g., [8], [4], [11], [9],
[21], [29]) for learning more appropriate time-dependent
embeddings from temporal networks. Recently, Ahmed et
al. [30] proposed the notion of attributed random walks that
can be used to generalize existing methods for inductive
learning and/or graph-based transfer learning tasks. In future
work, we will investigate combining both attributed random
walks and temporal random walks to derive even more
powerful and general embeddings from networks.

VI. CONCLUSION

This paper introduced the notion of temporal random walks
for embedding methods. Using the notion of temporal
random walks, we proposed the class of continuous-time
dynamic network embeddings (CTDNE) along with a general,
expressive, and flexible framework for computing them. Our
proposed framework provides a basis for generalizing existing
(or future state-of-the-art) random walk-based embedding
methods for learning dynamic (time-dependent) network
embeddings from continuous-time dynamic networks. The
result is a more appropriate time-dependent network rep-
resentation that captures the important temporal properties
of the continuous-time dynamic network. By learning time-
dependent embeddings based on temporal random walks, we
not only avoid the issues and information loss that arises
when time is ignored or modeled as a sequence of discrete

static snapshot graphs, but we also ensure the embeddings
are learned using only temporally valid walks.

REFERENCES

[1] D. Watts and S. Strogatz, “Collective dynamics of small-world net-
works,” Nature, vol. 393, no. 6684, pp. 440–442, 1998.

[2] M. Newman, “The structure of scientific collaboration networks,”
PNAS, vol. 98, no. 2, pp. 404–409, 2001.

[3] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of
social representations,” in KDD, 2014, pp. 701–710.

[4] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in KDD, 2016, pp. 855–864.

[5] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “LINE: Large-
scale Information Network Embedding,” in WWW, 2015.

[6] S. Cao, W. Lu, and Q. Xu, “Grarep: Learning graph representations with
global structural information,” in CIKM. ACM, 2015, pp. 891–900.

[7] R. A. Rossi, R. Zhou, and N. K. Ahmed, “Deep inductive network
representation learning,” in WWW BigNet, 2018.

[8] L. F. Ribeiro, P. H. Saverese, and D. R. Figueiredo, “Struc2vec: Learn-
ing node representations from structural identity,” in SIGKDD, 2017.

[9] L. Liao, X. He, H. Zhang, and T.-S. Chua, “Attributed social network
embedding,” arXiv:1705.04969, 2017.

[10] N. K. Ahmed, R. A. Rossi, R. Zhou, J. B. Lee, X. Kong, T. L. Willke,
and H. Eldardiry, “Inductive representation learning in large attributed
graphs,” in WiML NIPS, 2017.

[11] S. Cavallari, V. W. Zheng, H. Cai, K. C.-C. Chang, and E. Cambria,
“Learning community embedding with community detection and node
embedding on graphs,” in CIKM, 2017, pp. 377–386.

[12] J. B. Lee, R. A. Rossi, and X. Kong, “Graph classification using
structural attention,” in KDD, 2018, pp. 1–9.

[13] R. A. Rossi, B. Gallagher, J. Neville, and K. Henderson, “Modeling
dynamic behavior in large evolving graphs,” in WSDM, 2013, pp. 667–
676.

[14] R. Hisano, “Semi-supervised graph embedding approach to dynamic
link prediction,” arXiv:1610.04351, 2016.

[15] N. Kamra, U. Gupta, and Y. Liu, “Deep generative dual memory net-
work for continual learning,” arXiv preprint, arXiv:1710.10368, 2017.

[16] T. K. Saha, T. Williams, M. A. Hasan, S. Joty, and N. K. Varberg,
“Models for capturing temporal smoothness in evolving networks for
learning latent representation of nodes,” arXiv:1804.05816, 2018.

[17] M. Rahman, T. K. Saha, M. A. Hasan, K. S. Xu, and C. K. Reddy,
“Dylink2vec: Effective feature representation for link prediction in
dynamic networks,” arXiv:1804.05755, 2018.

[18] R. Rossi and J. Neville, “Time-evolving relational classification and
ensemble methods,” in PAKDD, 2012, p. 13.

[19] S. Soundarajan, A. Tamersoy, E. B. Khalil, T. Eliassi-Rad, D. H.
Chau, B. Gallagher, and K. Roundy, “Generating graph snapshots from
streaming edge data,” in WWW Companion, 2016, pp. 109–110.

[20] J. Sun, C. Faloutsos, S. Papadimitriou, and P. S. Yu, “Graphscope:
parameter-free mining of large time-evolving graphs,” in KDD, 2007.

[21] Y. Dong, N. V. Chawla, and A. Swami, “metapath2vec: Scalable
representation learning for heterogeneous networks,” in KDD, 2017.

[22] P. Holme and J. Saramäki, “Temporal networks,” Phy. Rep., 2012.
[23] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of

word representations in vector space,” in ICLR Workshop, 2013, p. 10.
[24] N. K. Ahmed, R. A. Rossi, R. Zhou, J. B. Lee, X. Kong, T. L.

Willke, and H. Eldardiry, “Learning role-based graph embeddings,” in
arXiv:1802.02896, 2018.

[25] J. Kim, Y. He, and H. Park, “Algorithms for nonnegative matrix and
tensor factorizations: A unified view based on block coordinate descent
framework,” J. of Glob. Opt., vol. 58, no. 2, pp. 285–319, 2014.

[26] R. A. Rossi and R. Zhou, “Scalable relational learning for large hetero-
geneous networks,” in DSAA, 2015, pp. 1–10.

[27] R. A. Rossi and N. K. Ahmed, “The network data repository with
interactive graph analytics and visualization,” in AAAI, 2015, pp.
4292–4293. [Online]. Available: http://networkrepository.com

[28] L. Zhu, D. Guo, J. Yin, G. Ver Steeg, and A. Galstyan, “Scalable
temporal latent space inference for link prediction in dynamic social
networks,” TKDE, vol. 28, no. 10, pp. 2765–2777, 2016.

[29] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in NIPS, 2017, pp. 1025–1035.

[30] N. K. Ahmed, R. A. Rossi, R. Zhou, J. B. Lee, X. Kong, T. L. Willke,
and H. Eldardiry, “Generalizing deep learning in graphs using attributed
random walks,” 2017, pp. 1–8.

