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a 1. What if CLIQUE were Fast? 4, Our Maximum Clique Fﬁ[ﬁ]@]@ﬁ'@ 9. Performance Results

O O O O

Consider a simple undirected graph G. A clique of size k
g b ! The algorithms search over Q Q Q Performance Proffiles

1s a subset of k vertices that forms a complete subgraph.
The maximum cliqgue problem 1s to find the largest such k
contained in G.

Suppose we have N problems, and M of them are solved within 4 times of the best

vertex-induced neighborhoods:
5 solver, then we’d have a point: (7, p) = (log, 4, M /N)

* After searching a vertex it Q ......

1s removed from the graph. 1

Closed under

Clique Cliques are nested : « Clique computations are 3 pmc (no neigh cores)
1mndependen N(4) — {1 735 6} ' BK BK solves only 80% of the

——FMC problems

1. Use a fast heuristic to approximate the size of the — 0.6
maximum clique. v  FMC is much better than BK,
e Search ordering. Our fast heuristic searches vertices by 0O 04 Social & Inf but not comparable to PMC.
decreasing core number. ocla f1o
* Greedy strategy. For each vertex and its induced neighborhood, 0.0 NetV_VOrkS e For most of these networks,
. . . . . we build a clique by greedily adding, at each step, the vertex with ' (Serial) PMC with neighborhood cores
CLIQUE in general is NP-hard, even .to apprqmmate 1t: In this largest core number is only marginally faster.
work, we propose a fast, parallel, maximum clique algorithm for * Pruning. Since the core numbers are also a lower bound on the % 5 4 5 3 10 15
large social and information networks. The runtime of our size of the largest clique a vertex participates, we can efficiently T
algorithm 1s shown to be linear in the size of the graph. This holds prune the search space. 1
: : - .o . : For the hard DIMAC
even for big graphs with more than a billion edges. 2. Initial pruning. Once we have a large clique H, we may problems, neighborhood cores
. . . [ CLIQUE is easy for L. remove all vertices (and their edges) that have K(v) < [HI. 0.8 improve ’ performance  quite
This now makes it p0s§1ble for ;| power-law graphs  This pruning procedure reduces the memory requirements quite significantly.
CLIQUE to be used in tasks GE) . . significantly for most networks. + 0.6
such as: | | *,:-E; ol . ° * In some cases, w.e I?nd that K.(V)+1 = |[HI and simply return H. ! DIMACS.-Hard The performance of
* Analyzing massive networks 5 3. Order the remaining vertices so that they’re searched 3 04 neighborhood cores in our
* Evaluating graph generation & -1 o 3 ., from smallest to largest degree. (16 Threads) parallel algorithm is shown to
* Community detection _ 4. Compute and prune vertex neighborhood. While 0.2 . increase compared to the serial
e Anomaly identification 2 . . . ' —e— pmc (N0 neigh cores) -
computing each vertex neighborhood, we systematically - version.
In this spirit, we have released our : : : - : : prune using core numbers and a pruned vertex array X. o - : - : -
codes and an online appendix: log IVI + IEI Nr(w) =G{v}U{u: (u,v) € E,K(u) > &,u & X}). ' . '
http://www.cs.purdue.edu/homes/ The CLIQUE problem can be solved in : . . , o ,
deleich/codes/maxcliques/ polynomial time for planar and perfect graphs. 5. Compute core numbers of vertex neighborhood. Main findings. Our algorithm outperforms the competition dramatically.
: ! In this work, we demonstrate that CLIQUE is Afterwards, we set P = Ny(v) and compute core numbers on The neighborhood core bounds help with challenging problems and
1 f -1 hs. :
RO SR TOT oA SrapT the reduced neighborhood. almost never take more than twice the time.

* Vertices with insufficient neighborhood core numbers are again

2:' g@@ﬁ@” ”[ﬁ]ﬁ"@ N@M@Wkg . ?EZY:: (ggge%b neighborhood cores.
O O 6. Greedy coloring. Istingg the degeneracy ordering from the 6” T@ME@@T@” S@@

_ craph V] |Z| o e neighborhood k-cores, we compute a greedy coloring to O O
Collaboration and web o e o s — obtain an upper bound on the clique size of the We use our fast maximum clique finder to compute the largest temporal
networks: We find that the ~ CELEGANS - <0l g : Do : o
largest k-core is the clique DMELA 7.4k 26k 7 7  0.06 & neighborhood, which 1s guaranteed to be at least as tight as strong component, which 1s known to be an NP-hard problem.
number, and can be verified by MATHSS;% g?:;l; 5132011\12 ??4 ??4 8-82 s the upper bound given by neighborhood cores When edges represent a contact — a phone call, email, or physical proximity
our heuristic! ) P 7. Recursivel rch prun rtex-neighborhood P _ iti ific ti -

HoLLYwooD 1AM 56M 2209 2209 1.69 S ecursively search pruned vertex-neighborhood between two entities at a specific time, we have a dynamic graph.
Technological networks: _ WIKI-TALK 92k 361k 14 15 0.09 Dynamic Graph

Reachability Graph
Surprisingly large maximum RETWEET 1.1M2.3M 13 13 0.58 Branch(C,P): yG P

2
cliques given that it indicates an WHOIS 7.5k 57k 55 58  0.09 while Pl > 0,
overly large set of redundant RL-CAIDA 191k 608k 17 17  0.13 If ICl + L > [HI,
edges, suggesting over-built _ASSKITTER 1.7M1IM 66 67 1.2 Select u from P, remove it, and add it to C 1,5 3 :> X :>
technology, or critical groups of ArRaBIC-2005 164k 1.7M 102 102 0.03 )
nodes WIKIPEDIA2 1.9M 4.5M 31 31 1.16 SIS B2 7 1 N
' It IP’l >0, 4

tech

o
T-2004 509k 7.2M 432 432 0.12 2
Social & FB networks: These UK-2005 130k 12M 500 500 0.06 recolor P’ and update coloring number L A temporal path is a sequence Edee (u,v) exists if remove
; e (u,v) exists i
difference between the actual 19k 568k 51 51 0.09 Else if ICl > [HI, Set H to be C (new max) 4 .
lique number and the largest 5 ANFORD DOSI™- PPN path from u to v. edges
ciq _ _ BERKELEY 23k 852k 42 42 0.16 ' Remove last vertex from C (backtrack) vz U v
k-core (harder to verify using  uiLLivois 31k 1.3M 56 57 0.18 & 4 5 2
on]y our heuristic)_ PENN 42k 1.4M 43 44  0.24 8 X < > U > U r W
TEXAS 36k 1.6M 49 51 0.33 &
: : : : FB-A 3.1M 24M 23 25 6.3 : : : : : :
'i-[s‘“;ltzfrgnrrilesrer’ia)(()lifnsnal rr(l:iilqeliz ot 5 oM21M 23 94 550 C is the clique being built, whereas P 1s the se.:t of potential Temporal Strong Components
O _t_g \ p wh UCI-UNI  59M 92M 6 6  33.86 vertices that could be added to C to form a clique of ICI+1.
and legitimate users (whom : .
. 51 SLASHDOT ~ 70k 359k 25 26 0.06 £ After a vertex u from P 1s added to C, we must remove it Parallel
llkely reCIprocate all fOllowerS) GOWALLA 197k 950k 29 29 0.2 ™ ) ]
. . . yourupe 1.1M 3.0M 16 17 084 S from P and compute the intersection of P N N (u) Maximum
riendster: Our fast heuristic FLICKR 514k 3.2M 45 58 52 ¥
finds the exact clique number, LIVEJOURNAL g-gﬁ ?gg/fM 2314 2;4 4218929 = < Cll(]ll@
. 11> ORKUT . . )
of this large 1.8 billion edge' TwitTER  21M 265M 174 323 598 'Q Finder
network in only ~500 seconds! pripnpsTER  66M 1.8B 129 129 1205 @ U-W—7 S
Also the exact clique finder only
takes 1205 seconds! The maximum cliques of Rg are the graph |Er| |Vg| |Er| w  Time (s.)
INFECT-HYPER 20k 113 6.2k 106 <.01

3. BOUNDS ON CLIQUE SlzE

Our algorithm uses novel bounds for social and information
networks, namely, the core numbers and greedy coloring.

K-core bounds

A k-core in G 1s a vertex 1nduced
subgraph where all vertices have degree
at least degree k. The core number of a
vertex v 1s the largest k such that v 1s 1n
a k-core. Let K(G) be the largest core in
G, then K(G)+1 1s an upper bound on

ENRON 50k 151 9.8k 120 <.01
FB-FORUM 33k 897 71k 266 0.02
Political Retweets FB-MESSAGES 61k 1.9k 532k 707 0.05

] o REALITY 52k 6.8k 4.7M 1236 0.19

RETWEET 61k 18k 66k 166 0.02
TWITTER-COP 45k 8.6k 474k 581 0.22

MITTROMNEY 8.5k 7.8k 108 5 <.01
BAHRAIN 8k 4.7k 129 8 <.01
BARACKOBAM 9.8k 9.6k 226 10 <.01

*In all networks, our algorithm
AR | computes the largest temporal-SCC

Reachability gr’ﬁapii shows Largest Temporal-SCC in less than a second.

clear communities of the consists of politically « Our fast heuristic finds the largest

8. Explicitly reduce the graph periodically. This
operation reduces the cost of the intersections in the
clique search procedure, and also has caching benefits.

9. Repeat steps 4-8 until all vertex neighborhoods

the clique size are searched political left and right right users. clique in all these networks
Greedy Goloring
Color vertices 1n order of decreasing core <1><\\ @ We beli h . MA”N F[“N] D”N@@
numbers, assigning to each vertex v, the smallest Ya e believe the most important steps are: O O
possible integer not yet assigned to one of its @ \\i * finding a good approximation via the fast heuristic * Our algorithm is fast and shown to be effective for many types of
neighbors. Let L(G) be the number of colors: o) @/// e searching vertices -- smallest to last ordering graphs, outperforming the competition
e efficient data structures for all operations and eraph * CLIQUE 1s easy for powerlaw graphs; linear in the number of
w(G) < L(G) < K(G) + 1. @ updates P SHap edges and vertices
. - . . * Temporal SCC'’s are easy to compute in practice
* aggressively using k-core bounds and colorin
N@”@hb@ﬁh@@@] bounds o~ Y S 5 * K-core pruning reduces the search space for sparse networks

bounds to re e vertices earl . L
ou 0 TEmMOVE Y Y * QOur parallel algorithms reduces the dependency on the initial

ordering of vertices, sometimes giving superlinear speedups

w(G) < mUaXL(NR(v)) < mng(NR(v)) + 1.



