
1.  Use  a  fast  heuristic  to  approximate  the  size  of  the 
maximum clique. 	


•  Search  ordering.  Our  fast  heuristic  searches  vertices  by 

decreasing core number. 	


•  Greedy strategy. For each vertex and its induced neighborhood, 

we build a clique by greedily adding, at each step, the vertex with 
largest core number	



•  Pruning. Since the core numbers are also a lower bound on the 
size of the largest clique a vertex participates, we can efficiently 
prune the search space.	



2.  Initial  pruning.  Once we have a  large  clique H,  we may 
remove all vertices (and their edges) that have K(v) < |H|.	


•  This pruning procedure reduces the memory requirements quite 

significantly for most networks. 	


•  In some cases, we find that K(v)+1 = |H| and simply return H.	



3.  Order  the  remaining  vertices  so  that  they’re  searched 
from smallest to largest degree. 	



4.  Compute  and  prune  vertex  neighborhood.  While 
computing  each  vertex  neighborhood,  we  systematically 
prune using core numbers and a pruned vertex array X.	



5.  Compute  core  numbers  of  vertex  neighborhood. 
Afterwards, we set P = NR(v) and  compute core numbers on 
the reduced neighborhood.	


•  Vertices with insufficient neighborhood core numbers are again 

removed from P. 	


•  P is also ordered by neighborhood cores. 	



6.  Greedy coloring.  Using the degeneracy ordering from the 
neighborhood  k-cores,  we  compute  a  greedy  coloring  to 
obtain  an  upper  bound  on  the  clique  size  of  the 
neighborhood, which is guaranteed to be at least as tight as 
the upper bound given by neighborhood cores 	



7.  Recursively search pruned vertex-neighborhood P	



	


	


	


	


	


	


	


	


	


	



	


	


	


	


	


	


	


	


	


	


8.  Explicitly reduce the graph periodically. This 	


     operation reduces the cost of the intersections in the 	


     clique search procedure, and also has caching benefits.	


9.  Repeat steps 4-8 until all vertex neighborhoods	


     are searched	
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Consider a simple undirected graph G. A clique of size k 
is a subset of k vertices that forms a complete subgraph. 	


The maximum clique problem is to find the largest such k 
contained in G.	
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Cliques are nested	
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Clique	



•  Our algorithm is fast and shown to be effective for many types of 
graphs, outperforming the competition	



•  CLIQUE is easy for powerlaw graphs; linear in the number of 
edges and vertices	



•  Temporal SCC’s are easy to compute in practice 	


•  K-core pruning reduces the search space for sparse networks	


•  Our  parallel  algorithms  reduces  the  dependency  on  the  initial 

ordering of vertices, sometimes giving superlinear speedups	
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DIMACS-Hard 	


(16 Threads)	



CLIQUE in general  is  NP-hard,  even to  approximate it.  In  this 
work, we propose a fast, parallel, maximum clique algorithm for 
large  social  and  information  networks.  The  runtime  of  our 
algorithm is shown to be linear in the size of the graph. This holds 
even for big graphs with more than a billion edges. 	



In this  spirit,  we have released our 
codes  and  an  online  appendix:
http://www.cs.purdue.edu/homes/
dgleich/codes/maxcliques/	



This now makes it possible for 
CLIQUE to  be  used  in  tasks 
such as:	


	



•  Analyzing massive networks	


•  Evaluating graph generation	


•  Community detection 	


•  Anomaly identification	
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The CLIQUE  problem  can  be  solved  in 
polynomial time for planar and perfect graphs. 
In this work, we demonstrate that CLIQUE is 
also easy for power-law graphs.	



CLIQUE is easy for	


power-law graphs	
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Dynamic Graph	
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Temporal Strong Components	


Parallel 

Maximum 
Clique 
Finder	
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Edge (u,v) exists if 
there is a temporal 
path from u to v.	
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Reachability Graph	



remove 	


non-reciprocal 

edges	



A temporal path is a sequence 
of edges that obey time.	
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The maximum cliques of RG  are the 	


largest temporal strong components	



✔	



Twitter:	
   The	
  maximum	
   clique	
  
is	
   a	
   strange	
   set	
   of	
   spammers	
  
and	
   legitimate	
   users	
   (whom	
  
likely	
  reciprocate	
  all	
  followers)	
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Technological	
   networks:	
  
Surprisingly	
   large	
   maximum	
  
cliques	
  given	
  that	
  it	
  indicates	
  an	
  
overly	
   large	
   set	
   of	
   redundant	
  
edges,	
   suggesting	
   over-­‐built	
  
technology,	
  or	
  critical	
  groups	
  of	
  
nodes.	
  

Collaboration	
   and	
   web	
  
networks:	
   We	
   Nind	
   that	
   the	
  
largest	
   k-­‐core	
   is	
   the	
   clique	
  
number,	
   and	
   can	
  be	
   veriNied	
  by	
  
our	
  heuristic!	
  

Social	
  &	
  FB	
  networks:	
  These	
  
networks	
   have	
   the	
   largest	
  
difference	
   between	
   the	
   actual	
  
clique	
   number	
   and	
   the	
   largest	
  
k-­‐core	
   (harder	
   to	
   verify	
   using	
  
only	
  our	
  heuristic).	
  

Friendster:	
   Our	
   fast	
   heuristic	
  
Ninds	
   the	
   exact	
   clique	
   number,	
  	
  
of	
   this	
   large	
   1.8	
   billion	
   edge	
  
network	
   in	
   only	
  ~500	
   seconds!	
  
Also	
  the	
  exact	
  clique	
  Ninder	
  only	
  
takes	
  1205	
  seconds!	
  

The  algorithms  search  over 
vertex-induced neighborhoods:	


•  After  searching a  vertex it 

is removed from the graph.	


•  Clique  computations  are 

“independent”	



_______________________________________________	


For each vertex u in decreasing core number order	


    Return if the core number of u is less than max.	


    Let S be the neighbors of u with core numbers > max	


    C = {}	


    For each vertex w in S by decreasing core numbers:	


        Add w to C	


        Set S to be S ∩ N(w)	


    If |C| > max, H = C and max = |H|	



Our  algorithm uses  novel  bounds  for  social  and  information 
networks, namely, the core numbers and greedy coloring. 	



	


PMCHeuristic: Returns a large clique H	
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A  k-core  in  G  is  a  vertex  induced 
subgraph where all vertices have degree 
at least degree k. The core number of a 
vertex v is the largest k such that v is in 
a k-core. Let K(G) be the largest core in 
G,  then K(G)+1 is  an upper  bound on 
the clique size  	



Color  vertices  in  order  of  decreasing  core 
numbers, assigning to each vertex v, the smallest 
possible  integer  not  yet  assigned to  one  of  its 
neighbors. Let L(G) be the number of colors:	



Branch(C,P):!
while |P| > 0,	


    If |C| + L > |H|,	


        Select u from P, remove it, and add it to C	


        Set P’ to be P ∩ NR(u)	


        If |P’| > 0, 	


             recolor P’ and update coloring number L	


             Branch(C,P’)	


       Else if |C| > |H|, Set H to be C (new max)	


       Remove last vertex from C (backtrack)	



We believe the most important steps are:	


•  finding a good approximation via the fast heuristic	


•  searching vertices -- smallest to last ordering	


•  efficient data structures for all operations and graph 

updates	


•  aggressively  using  k-core  bounds  and  coloring 

bounds to remove vertices early	



Suppose we have N problems, and M of them are solved within 4 times of the best 
solver, then we’d have a point:	



Main findings. Our algorithm outperforms the competition dramatically. 
The  neighborhood  core  bounds  help  with  challenging  problems  and 
almost never take more than twice the time.	



BK solves only 80% of the 
problems	



•  FMC is much better than BK, 
but not comparable to PMC.	



•  For  most  of  these  networks, 
PMC with neighborhood cores 
is only marginally faster. 	



For  the  hard  DIMAC 
problems,  neighborhood  cores 
improve  performance  quite 
significantly.	


	


The  performance  of 
neighborhood  cores  in  our 
parallel  algorithm is shown to 
increase compared to the serial 
version.	



C is the clique being built, whereas P is the set of potential 
vertices that could be added to C to form a clique of |C|+1. 
After a vertex u from P is added to C, we must remove it 
from P and compute the intersection of P ∩ NR(u)	
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N(4) = {1,2,3,5,6}	



 	



 	



We use our fast maximum clique finder to compute the largest temporal 
strong component, which is known to be an NP-hard problem.	


When edges represent a contact − a phone call, email, or physical proximity 
− between two entities at a specific time, we have a dynamic graph.	


	



•  In  all  networks,  our  algorithm 
computes the largest temporal-SCC 
in less than a second.	



• Our  fast  heuristic  finds  the  largest 
clique in all these networks	



	



Reachability graph shows 
clear  communities  of  the 
political left and right 	



Largest  Temporal-SCC 
consists  of  politically 
right users.	



Political Retweets	




